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Classical phase space and statistical mechanics of identical particles
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Starting from the quantum theory of identical particles, we show how to define a classical mechanics that
retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall
effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau
model. In both cases the resultiofassicalstatistical mechanics is shown to be a nontrivial classical limit of
Haldane’s exclusion statistics.
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I. INTRODUCTION in general these singularities do not have the same simple
geometrical interpretation as in configuration space.

Particle statistics is usually considered to be a quantum The quantum description of identical particles can be in-
effect. It is expressed through the symmetry of the wavdroduced in terms of wave functions, or alternatively in terms
function of a system of identical particles and does not apef path integrals, defined on the configuration space with
pear, normally, as an interaction in the Hamiltonian. In twoidentifications[1,2]. The presence of singularities then are
space dimensions it can be represented as a special kind iofiportant, since it divides the continuous paths into different
interaction, but being of the Aharonov-Bohm type, it doesclasses, depending on how they evolve around the singulari-
not give rise to any force on the particles. ties. Such classes can be associated with different phase fac-

Thus, at the level of classical trajectories of individual tors. There is only one characteristic phase factor for each
particles, there is no difference between identical and nonsystem of identical particles, corresponding to an exchange
identical particles. There is, however, one place in the clasef two particles, and this factor identifies the statistics.
sical description of particles where their indistinguishability Viewed in this way, the statistics parameter associated with
is important, namely in the statistical mechanics. There thehe particles labels inequivalent quantizations of the classical
trajectories of individual particles no longer matters, but thesystem. Thus, the statistics parameter appears in the quanti-
volume of the available phase space is important for thermozation of the system and is not present in the classical de-
dynamical quantities. Indistinguishability is introduced by scription of the particles.
dividing the phase-space volume Nfnonidentical particles In this paper we will discuss an alternative approach to
with the factorN!. This reduction is essential to give the the classical description of identical particles. This does not
correct expression for the entropy and thus to resolvenean that we consider the standard description of point par-
Gibbs’s paradox. ticles referred to above as being in any sense incorrect. How-

The reduction in phase space is readily understood. If thever, we would like to stress that starting from the quantum
particles are indistinguishable all configurations that can beheory there are different possibilities for describing the cor-
related by a permutation of the particles correspond to oneesponding classical system, and we would like to examine
and the sam@hysical configuration. This single configura- one where the statistics parameter is present also at the clas-
tion for identical particles is then represented\Hddifferent  sical level. As discussed in the paper we may view this as a
configurations in the case of distinguishable particles. Thenonstandard way of taking the classical limit.
configuration space of indistinguishable point particles is The way we introduce the classical description is to con-
therefore derived from the space of distinguishable particlesider, in a general form, a coherent state representation of the
by an identification of equivalent points. guantum system. We assume the coherent states to be deter-

The identification of points implies that the configuration mined by a set of particle coordinates, and we further assume
space of a system of identical particles is not everywhere &e time evolution(in the low-energy regimeto a good ap-
smooth manifold, there are singularities corresponding to th@roximation to be described simply by the motion of these
situation where two or more particles occupy the same pointoordinates. There is a manifold defined by the set of pos-
in space. Such a point is a geometrical singularity, a point osible coordinates and a natural phase-space structure inher-
infinite curvature. For the phase space the situation is similaited from the full quantum description. This phase space is a
the identification of points introduce singularities, althoughsmooth manifold, even when the particle coordinates coin-

cide, and the reduction corresponding to the factbi Hoes
not have to be introduced by hand, but appears naturally
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bosons, fermions, and in general anyf2s], and we calcu- whereA,; is the Berry connectioh7]
late the available phase-space volume for the cadeidén- _
tical particles in a finite volume. The classical statistics pa- A=t di), (2.3

rameter is then identified as the phase-space volume . — . 1
occupied by each of the particles present in the systenfi denotes the partial derivative with respecixjo” and the

Viewed in this way the description has the character of JotentialV is the expectation value of the Hamiltonian in the
classical analog of the quantum exclusion statistics introState|¢;). The equation of motion derived from the La-
duced some time ago by Haldaj¥. We examine this cor- 9rangian is
respondence in some detail by considering the statistical me-

chanics of our classical system. fijxj=aV, 2.4
The description we use is not restricted to systems OI/vith

point particles. We illustrate this by considering vortex solu-

tions of the Chern-Simons Ginzburg-Landau theory. The fij=aiA— A . (2.5

manifold defined by thé\-vortex configurations has a natu-

ral phase-space structure, and although this cannot be fullynder the general condition thé is an everywhere invert-
determined, the phase-space volume can be calculated afle matrix (which in particular means that the spaté is

the statistics parameter identified. This particle description okven dimensional a Poisson bracket can be defined and a

vortices is closely related to a description of vortices in thesymplectic structure introduced oi. The bracket has the
(relativistic abelian Higgs model previously discussed byform [8]

Samols, Manton, and othef5,6], although in their case the
vortex manifold is identified as a configuration space rather {A,B}=(f‘1)ijaiAajB, (2.6

than as a phase space.
and the equation of motion can then be written as

Il. CLASSICAL PHASE SPACE - Vv 2
FROM THE QUANTUM DESCRIPTION Xi={x;,V}. (2.7)

In this section we consider a general quantum system anfihe corresponding symplectic form is
a subset of statgs),), which is indexed by a set of coordi-
natesx={x1,_x2, ce XN - These may be the coordinates of 0= — Efi-dxi/\dx- , 2.9
a system of(identica) particles or the coordinates of ah 21 !
soliton configuration, but we do not have to be more specific
at this point. We only assume that the wave function evolve@nd in particular this determines the phase-space volume.
smoothly with a change of these coordinates, and that it ighus, under the general conditions mentioned, a classical
symmetric under an interchange of any pair of kheoordi- ~ Phase space can be derived from the quantum description.
nates. Furthermore, we assume that in the regime of interedote, however, that it is a generalized phase space in the
(typically at low energieks the time evolution of the system, Sense that no configuration space has been identified.
to a good approximaﬂon, can be descrit(w to a phase The symplectic structure of the manifalel has a Simple
facton as a time evolution of the coordinates only. This geometric interpretation. It is defined as the imaginary part
means that it makes sense to consider the restrigted-  Of the scalar product in the tangent spaceMf which is
strained system where the evolution of the system is pro-obtained by projection from the Hilbert space of the full
jected to the manifold defined by the normalized staggs. ~ quantum system and can be written as
Since the physical states correspond to rays in the Hilbert
space, i.e., to state vectors defined up to a complex factor, we fij=—2aIm{(D; U Dt 2.9
consider the classici-particle spaceM, derived from the . . R
guantum description, to be defined by the normalized statevsvIth Di the projected derivative,

|,) only up to such a phase factor. It is the phase-space N\ ,

stru>cture of the spac#1 which will be of importance for our IDith) =10it5) =14 (sl 1189 219

discussion. Written in this form, it is manifest that the symplectic form,
The Schrainger equation of the quantum system can begefining the classical kinetic energy, only depends on the

derived from the Lagrangian, properties of the projected subspace. The real part of the

) scalar product gives another, related structureMdnwhich
L=in{y|)—(Y|H|y), (2.1)  can be interpreted as a metfig],
whereH is the Hamiltonian of the system, and the Lagrang- 0ij = 2ARe{(D;,|D;j ¥} (2.11

ian of the constrained system is obtained from this by re-
stricting | ) to the subset of statég,). Expressed in terms

of the coordinates;, it has the generic form We use a shorthand notation by treatings a single parameter.
) In reality the phase-space for each particle will be multidimen-
L=xA;(X)—V(x), (2.2 sional.
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This construction provides a natural way to introduce a meteontext, and again study the corresponding classical mechan-
ric on the phase space, and makes it possible to discuss its.
geometry. Since we are interested in the statistical mechanics, we
At this point we will introduce an assumption about the also want to calculate thid-particle phase-space volumes in
geometrical structure oM, which leads to a simplification the different cases. For this, it is necessary to start with a
in the discussion to follow. We assuref to be a Kaler  finite volume, and then take the thermodynamic limit. There
manifold. This has several technical implications, but weare two obvious ways to confine the system, either by a
will only use that there is a complex structure a1, such  potential, or by restricting the motion to a compact surface.
that the symplectic and metric structures referred to abovén this section we shall consider the latter and study particles
are the antisymmetric and symmetric part of the same commoving on a sphere. The case of a harmonic confining po-
plex Kahler metric. In terms of complex coordinates o1, tential is treated in the Appendix.
we then get the following expressions for the symplectic

form and the metric: A. Bosons and fermions in the plane

w=—fz,dz/\dz, We shall use the notation of R¢fl0] and define a coher-
Y 2.12 ent state by translations of a minimum uncertainty reference
d2= — 2if4,dzdz, ' state|0). The translation operatoi3(z) form a unitary and
" irreducible representation of the Heisenberg-Weyl group,
with and in the following we shall use the following explicit rep-

resentation in terms of creation and annihilation operators:

f?izj - &ZAj N aszi_' (2'13) D(z)= ezanfaz ef(llz)z_zezaireffa (3.1)

This tensor can further be expressed as
where[a,a']=1, andzis a dimensionless complex coordi-
f5, =i079,K(z,2), (2.149 nate. In addition to the obvious relatioB§z) '=D(—z) and
Y Y D(0)=1, we shall need the following multiplication rule:
whereK(z,z) is the Kaler potential.

The condition thatM is a Kaler manifold is satisfied D(z;)D(z,)=e MP@z2"22)D(z,+27,). (3.2
when the state vectors which define this manifold are, up to
normalization, analytic functions &, The coherent states are now defined by
= 2.1 =
|¢z> N(ZZ)|¢Z>, (219 |Z>= D(Z)|O>=ef(1/2)zzezair|0> (3.3

where| ¢,) denotes the analytic part of the state vector and

M(z,2) is the normalization factor. The vector potentials arewith a reference stat¢0) which is annihilated bya. For
then given by convenience we shall use a notation where the normalized

coherent states are labeled bynly, although the normal-

A=—ihd, INMZ,z2), ization factor also depends an .T.his is- to distinguish the
' 21 coherent states from the position eigenstaeg), and

(2.16 should lead to no confusion. From E&.2) we immediately

Ai=ihaz InN(Z,2), get the overlap between two coherent states,

and the Kaler potential is related in a simple way to the

normalization factor, (24]22)=(0|D"(21)D(2,)|0)
=(0|D(—2z4)D(z,)|0
K(ZZ):ﬁ|n|N(ZZ)|_2. (2.17) < | ( 1) (2)| >
= (W)@ +22)+212; (3.4

Ill. COHERENT STATES OF IDENTICAL PARTICLES ) ) ) .
An unsymmetrized basis of N-particle coherent states is de-

We now illustrate the general discussion by consideringined by
coherent states of the one-dimensional harmonic oscillator,

or equivalently, charged particles moving in two dimensions 12)=|21.25, . . .Zy)

in the presence of a strong magnetic field that restricts the

available states to the lowest Landau level. In this example =D1(z1)Dy(2,)- - -Dpn(zn)[0,0, ... ,0

we can explicitly derive the metric and symplectic structure, N — Nt

and show that they can be obtained from #hkéa potential. =el~ (Wi male>izna)| ). (3.5

We first define the coherent states for bosons and fermi-
ons and derive the corresponding classical mechanics. TheMormalized N-particle coherent Bose and Fermi states are
is no unambiguous way to define coherent states for anyonsymmetric and antisymmetric linear combinations, respec-
but we will use a construction which is very natural in this tively,
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K(Z,2,Z,Z) . =2ZZ+ In[e M2+ g~ (12072] (3,14
|Z,i>:|21,22,.. ZN>+ leaz)\/— E 77Pelpl|0>
(3.6) where * refers to bosons and fermions, respectively. The
' corresponding Lagrangians for the relative coordinate are
where the sum is over permutatioRsand the sum in the now obtained using Eq$3.11)—(3.14)
exponent over the indek is suppressed. The permutation

factor »p equals 1 for bosons antd1 for fermions, depend- )
ing on whether the permutation is even or odd. Note that all Lg(z,2)= (_z zz)tanh— zz tanh—
dependence og is in the normalization factal, which is
given by _ - (319
. ih . - 72z ho zz
Le(z,2)= Z(?z— zz)cothE - —77 coth—

1 _ _

IMzD)| %= 2 npnp'm<0|esz’a"ez‘Pa‘T|0>=Z npelie.
PP’ .

3.7 Note that the fermionic Lagrangian is singular in the limit of

Following the general discussion in the preceding sectionSmall r=1zz, i.e., when the particles come close together.

N-body system as gular plece is a total time derivative,
L(z,2)=(z,*|iho,—H|z, ), (3.9 _ it . .1 ik
. limLg=—(z2z—2z) — = =9, In(2/2), (3.16
whereH is the quantum Hamiltonian. In the following we r—0 2 zz 2
shall use the harmonic oscillator as a simple illustration, i.e.,
we take which can be absorbed iV as a pure phas@elaxing the
N reality condition, or equivalently, as a pure gauge termAin
E a a+1 (3.9 andA;. From Eq.(2.14) we get for the symplectic two form,
Using Egs.(3.9), (3.9, and(3.6), we get szz:% tanhEJr 7z _ - %
L(2,2)= 1 (Zapi 07 IN N~ 2, 0, INN) 2cosr-°f7 o
—fiwzd, INM 2= INfiw.  (3.10 - (3.1
' £ ih 7z 7z ih
By varying with respect t@; one easily verifies that the f?zzj COthE_ Nz r:;jv
equation of motion is that of a harmonic oscillator, i.8., 2 S|nh7-7
=—iwz,. We can rewrite Eq(3.10 on the standard form
(2.2,

wherez=re'®. Note that although the Kder potential is
L(z,Z)= 3 (As Gl +A, Zal) V(z.z), (3.1) Singularin the fermion case, the metric is well defined.
In both cases, in the limit of large we retain the naive
and using the phase conventidfi= A’ the potentialsh, and ~ flat metric,ds’=%dzdz Since we refer to relative coordi-

Ay and V can all be obtained from the Ker potential nates this expression is reduced by a factor 2, as compared to
(2.17), the case of a single particfgNote that the appearance bf

in these classical expressions is due to the use of the dimen-
V(z,2)= wz, f?ziK(ZE, sionless coordinate As a more natural variable in the clas-

sical description we may use the dimensional coordizate
A(z,2)= a K(z_j (3.12 =z which then would remové from the expressions.
The more interesting limit is that of smal)
i
A(z2,2)= - 5 9:K(z,2), r—0
i(2.2) RN 2 ds? — #[p?d#*+dp?] (bosons,

with 3.18
rHOﬁ

o 2q2 2 :
K(z,i}zﬁlnp\/’(ziﬂ’zzﬁgp e, (3.13 ds’ — 3[p*d¢*+dp”] (fermions,

To get some insight into the meaning of these expressions

we first analyze the two-body case. Expressed in center of?0Our normalization is such that for a harmonic-oscillator Hamil-
mass and relative coordinateZ=3(z;+2z,) and z=z;  tonian withm=w=1, z is related to the usual coordinates and
—7,, the Kéhler potential reads, momenta byz= (x+ip)/y2#%, sosdzdz=[(dx)2+ (dp)?2]/2.
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where we have changed variablepter?/2 andé=2¢. We  N-particle system depends on this parameter, not only for
note that in these variables the metric has the standard flabosons and fermions but also for intermediate values of the
metric form in polar coordinates. Thus, the new angular varistatistics parameter.
able is restricted to an interval of72 (for p=0 to be a
regular point, and thereforep is restricted to an interval of B. Anyons in the plane
7.7' This has implications also fo_r large sgparatlon of the par- It is well known that the harmonic-oscillator coherent
ticles, where the space of relative coordinates has the geom- . . . ;

states are identical to the maximally localized states of

etry of a cone rather than that of a plane. This is similar tocharged particles in a magnetic field projected to the lowest

the situation for the configuration space of two identical Par - ndau levellLLL ). The translation from harmonic oscilla-
ticles when this is constructed by identification of physically A : )
tor to particle in the LLL is as follows:

equivalent point$2]. However, in the present case the space
is geometrically smooth for small separation and the reduc-

tion in volume(essentially by a factor)Zompared to that of a= I_(ﬁx_ iﬁy)l,
nonidentical particles appears naturally from the metric of V2
the space and not through the identificatidoy hand of (3.21)
equivalent points. 1 ]
The phase space of bosons and fermions has the same flat z= E(Rx_'Ry)T’

metric for large separation. However, for small separation it
T Ao, i ieads 12 fihere n the symmetric gaugel,—p,— JeBe are the
distance behavior which is different for bosons and fermionsgenerators of magnetic translatiori3, the guiding center

. . i 3 . coordinates, andi=(#%/eB)Y? the magnetic length. This re-
If we fix the maximal separation?,” of the particles, the o . .
o . .~ Jation just expresses that the configuration space of charged
volume of the interior of the selected region is determine

. articles in the LLL is mathematically equivalent to the
from the form of the potentiah, and Az on the boundary P S ) . . i
alone. With the description still restricted to relative coordi- phase space of a particle in one dimension. The reinterpreta

nates, the phase-space volume becdmes tion of the coheren_t states as describing particles in the.low—
' est Landau level is helpful in two respects. We can in a
simple way generalize the coherent state representation of
bosons and fermions to fractional statistics, i.e., to anyons in
V=- f fzdz/\dz= _{ fﬁ Adz+ fﬁ Aﬂ#' the lowest Landau level. We can also more easily introduce a
(3.19 finite volume and take the correct thermodynamic limit. Al-
though there is no natural way to restrict particle motion in
one dimension to a finite phase space, charged particles mov-
ing in a finite area penetrated by a constant magnetic field,
makes perfect sense. In particular we ¢antheory) study
Vg=3hmR? Veg=3#h(7R*~2m). (3.20  anyons moving on a compactified space, like a sphere. This
problem will be studied below, but first we generalize our

The difference in phase-space volume is a manifestation Jfoherent-state formalism to the case of fractional statistics.
In complex coordinates, aN-body anyon wave function

This gives in the two cases

the difference in statistics in the classical description. This i

readily understood from a semiclassical description wheri‘as the form

the number of states in ésingle particlé phase space is Z 7\ V2

identical to the volume divided by. (The factor 1/2 in vrz2=]] ( ' ’) Vg(2,7), (3.22
(3.20 follows from the fact that we refer to relative coordi- i<j \Zi—Z

nates, with the angular integration (8.19 running from 0
to 7. The volume of one particle space with the position of
the second particle fixed would not include this fagtdn. Exceptions are the LLL anvon states in a maanetic field
the following we will simply take the reduction in phase- hi hp f the forni11 y 9
space volume due to the presence of the other particle gghich are ot the om{ 11},
defining the statistics parameter in the classical description. -
We will then examine how the phase-space volume of an \P;(z,ﬂzl;[ (zi—zj) e~ Mg (7), (3.23
i<j

where Wy is a totally symmetric function. In general very
little is known about anyonic energy eigenstates Xor 2.

wherem=(my, ... ,my), m; integer, and

jR is again measured in dimensionsless units, just as

The phase-space volume given by E8.19 is identical to the _ m;
Berry phase associated with the interchange of the two particles. Sm(z)—./\/mSI;[ 4 (3.29
The close relation between phase-space volume and Berry phase is
the analog of the two well-known aspects of quantum statistics: theS is the symmetrization operator and,, a normalization
symmetry of the wave function on one hand and the Pauli exclusioconstant. We now recall12] that the fermion and boson
principle on the other. coherent states in E@3.6), up to a normalization factor, is
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nothing but the projection on the lowest Landau level of theparticles, where the polynomial part of the wave function in
appropriately(ant)symmetrized position eigenstates, the relative coordinate is given by[11]

|Z’i>:Ct(213PLLL|Z!Zt>! (323 22m+V
Sm(2)

(3.3

which implies that any bosonic of fermionid-body wave - Va2 T (2m+1+v)

function in the lowest Landau level can be expressed as
+ o> _ 1 The Kéhler potential can then be calculated from E81.30
V5(2,2)=(2,2,=|P_  |¥)=C.(272) (Z:i|‘l’>('3 26 and expressed in terms of a generalized hypergeometric
' function,

In particular, if we are given a complete SBf, (z,z) of such
LLL wave functions, we can reconstruct tieparticle co-

herent states by K(z,z)=fiIn

1 v v (z2)?
AT(1+ ) 1F2(1’§+§’1+§’ 16)

(3.32
+)=C.(z Z,* - _ .
l2.%) ’(Zzzm: Im){miz.2,) The larger limit can be obtained from the properties of the
hypergeometric function, and coincides with the result for
- bosons and fermions. The smallimit can be read off di-
=C.(zz ¥ (z,z)|m), 3.2 . !
=( _5%:’ m(22|m) (327 rectly from the leading term in Eq3.30),

and using that the statés) are normalized, we can express - k4 Z7\2
the normalizatiorC..(z,z) as r“LnoK(ZZ) =hvinzz+ 20+9)2+0) ( > +const,
_ + — — (3.33
|C.(2,2)| 2:% [V5(2D)?=(zZ=|PLlzZ %)
(3.29 giving the asymptotic metric
The same procedure can now be applied to anyons in the 2% - )
LLL provided that wedefinethe coherent states by the pro- dSZ:OZW[P dec+dp<],  (3.39

jection of the position eigenstates on the LLL. This definition

is not unique, but can be shown to have several good prop- = ]
erties[12,13. By substituting Eq(3.23 in the relations cor- Which interpolates smoothly between the expressiGnkg
responding to Eq(3.27) and (3.28 and redefining the nor- for bosons and fermiongNote that the phase-space metric

malization constant by an exponential and a Jastrow factdieund in this way does not have the same physical dimension
which is common for all the wave functions, we get as the metric of the space in which the anyons move. Thus,

there is a scale factdf/% between the two metrics, where
is the magnetic length.
|z, VFNJZE% M) Su(2), (3.29 In spite of the complicated form of the 'Kker potential
K(z,2), there is a simple property that immediately follows
with if we write it in the following form using the second identity
in Eq. (3.30:

W22 2= S I8

K(z2)=fh|zz—2vY, Injz—z|+ |n<z,zv|PLLL|z,zv>}
i<j
=e?[] |z-z| 2(zzZv|PL|2Zv). (339
i<j

(3.30 For a translationally invariant stateorresponding to a con-
stant magnetic field and no external potentwily the first

These expressions are the anyonic counterparts to(B@s. term can depend on the c.m. coordinZteEquivalently, we
and(3.7) in the case of bosons and fermions, and the dericonsider the limitz;=Z where the positions of all the par-
vation of the classical mechanics followsutatis mutandis ticles coincide, and get
The expressions are of course much more complicated than
in the boson or fermion case, and there is no known analytic K(Z,Z)=N#Z2Z, (3.36
expression for the Kaer potential except in the case of two

corresponding to a single particle of chafgeas expected.
Below we shall see that this relation is altered when the
SThis can easily be verified by explicit calculation, and it is also particles are moving on a sphere, and the corresponding ex-
natural since the coherent states are the minimum uncertainty statpgession will allow us to calculate the pertinent phase-space
centered around. volume for particles with different statistics.
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C. Identical particles on a sphere Using Eqgs.(3.37) and(3.38 we can easily calculate the rel-

In this section we will calculate thél-particle phase- €vantoverlap
space volume for particles confined to a finite region. We are 23w — 9]
interested in the dependence of the volume on the particle (Ole*~e +|0>:5ij(1+zw) (3.42
statistics. This extends the previous discussion of the two-
particle case and makes it possible to derive (itlassical
statistical mechanics of the particles. As a convenient regu-
larization of the system size, we consider a phase space with |IMz,2)| %= > well (1+szi)2j. (3.43
spherical geometr$. P ‘
A charged particle moving on a unit sphere, penetrated b
2j units of magnetic flux, has a total angular momentiim
=j+L, whereL is the orbital angular momentum. The low-

¥or the case oN coinciding bosonsz; =z, we immediately
get the following Kaler potential:

est Landau level corresponds lte=0 and has a p+1 de- 77

generacy[14]. Again we can construct coherent states by K(z,2)=N#A2j In 1+T , (3.49
acting on an arbitrary minimal uncertainty state, which we J

shall take to béj,—j), with the appropriate group elements and the corresponding metric

of SU(2). We describe the sphere by stereographic projection

and use a dimensionless complex coordinateglated to the IN%

polar angles by = — tan(/2)e”'?. It is easy to show that ds?=——=—dzdz (3.45
this zis translated into the dimensionles®troduced earlier 1+ E

in Eq. (3.21) by the substitutiore— /(1/2j)z. For ease of 2

notation, we shall make this substitution only in the final. . . .
expressions. is just N times that of a sphere. Following Mantd6], we

The SU2) generators in thg¢ representation, and the cor- can use this result to optam the the_ voI.ume of Nreoson .
. - phase spaceThe essential observation is that the submani-
responding coherent states are given by fold spanned by the configurations ldfcoinciding bosons is
D(z)=e?)+e™og -, (3.37) a complex curve of degreB in the manifold CPy. The
metric (3.45 immediately gives the volume corresponding to
whereJ; satisfy the standard angular momentum commutathis complex curve, which can be shown to ldimes the
tion relations andy= In (1+z2). TheD(z)'s satisfy a multi- areaA, obtained by integrating the fundamental two foam
plication rule similar to Eq(3.2), but here it is sufficient to in Eq. (2.12 over a complex line. It then follows from a
know the overlap, general theorem for Kder manifolds that the total volume is
, A given by
(zZw)y=[(1+Zz)(1+ww)] I (1+zw)%.  (3.39

Note that in the limitj =R?/1?>— % corresponding to a large V= W(A)N- (3.49
radius, or a strong magnetic field, we recover '

(z|w>ﬁe*(1’2)72*(1’2)"“*7"”, (3.39 In our case, using Eq$3.44) and(2.12, we get

h4mR?
|2

where we have rescaled- /(1/2])z. We can now immedi- Azhf w=h2j= =ed, (3.47
ately take over the result8.6) and(3.7) for the bosonic and sph

fermionic states in the plane ) ,
which shows that the area s times the number of flux

1 : quanta¢y= h/e that penetrate the sphere, or equivalently,
|z,i>=/\/(z,§5—I > ppefis’+|0), (3.40  times the area in units df.
\/N- P In the fermion case, we first note from E&.43 that the

: L normalization can be expressed as a determinant,
and their normalization

. |Mz7Z)| "2=N!det(1+7z7z;)?. (3.48
—2_ =0z I a7
IMz2)| _g, KLAaNT (Olefie=e%e+|0). In this case we cannot directly put the particles on top of
’ (3.4) each othefthat would give a divergingv), so we instead set
z;=z+ 6, and consider the limis;— 0. Expanding in5;, we
get

The most natural choice for a closed two surface seems to bethe
torus, since the sphere has a finite curvature. There is, however, a
technical difficulty in generalizing the results in the plane to a torus In [16] a formula for the volume of the moduli space for vortices
in that the magnetic translation operators are not well defined fomoving on an arbitrary genus Riemannian surface is derived mak-
general translations due to the periodicity conditiphs]. ing extensive use of theorems from complex geometry.
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det(1+7zz)%=(1+7z2)%Ndetv;,; 3.4 zz;
Urzz)T=(1+2z) | (349 K(z,ij=ﬁ(—j+§(N—1))2 in| 1+ 22
where ' ]
2j o —Zﬁvz In|zi—z| +# In(z,Z,v|Py[2,Z,v).
M|]:1+ — (f&,-i—zﬁj) (35@ 1<l
(1+zz)

(3.595

The matrixM is Hermitian, so the determinant is real and, Note that in this case we do not have any explicit expression
furthermore, it has zeros fo; = ;. These properties to- for the Kznler potential corresponding to E¢3.41) in the
gether with power counting is sufficient to establish case of bosons and fermions. We can, however, again deduce
the metric corresponding to configurations with coinciding
1—[ 15— 5[2 (350 anyons, i.e.zi=_z, from the ab_ove expression, again no_ting
iR L that the complicated overlap in the last term must be inde-
pendent ofz, this time because of rotational invariance. The

whereC is az and 8 independent constant. Combining Egs. Kahler potential becomes
(3.49 and(3.51) we get, up to a constant, the Kar poten-

— —1)/2
77 [N(N—1)72]

deNij =C S ——
(1+72)?

il ) v(N—1) 22z
tia K(z,2)=hN2j 1—2—j In 1+j— +..- (3.56
K(z,2)= In(1+22)2N"NN"1 4 n(Zz) NN 172 , , _ ,
which again smoothly interpolates between the bosomic (
N—-1 zz\ 1 =0 d fermionic ¢=1 Its,
_2iN[ 1- - )In 1+2_j —EN(N—l)In(?z). ) and fermionic ¢=1) results

1
(3.52 V,,=m[A— v(N—1)h]N. (3.57

The last term can be removed by a so-calleciéagauge g expressions we have found above for tgarticle

':_ransforrrl[atlct)rg, and corlretgp(f)n({s t(;hre{[d(jefln|ng tthe ”ffg‘j"zt bhase-space volume demonstrates a “classical exclusion
lon constant by an analytic factor that does not contribute rinciple.” Thus, each new particle introduced in the system

the metric. The first term differs from the boson c&3al4) will find the available volume reduced hy= vh relative to

only by the “reduction fa_ctor 1_(N._1)/ZJ Wh_'Ch equals the previous one. The quantity, i.e., the reduction in phase-
one foer L, correspon(_jlng to a_smgle fermion, and Z_erospace volume, can be taken as defining the classical statistics
for N=2j+1 correspon(_jlng to a filled Landau level. Using arameter of the particles. In the present case it is simply the
the same argument as In the boson case, we get the pha%l'mensionles)s guantum statistics parameter multiplied
with Planck’s constani. In other cases such a classical sta-

1 tistics parameter may be possible to define in terms of re-
Ve=—T[A—(N-1)h]". (3.53 duced phase-space volume, even if there is no underlying

N! point particle description. In the next section we will study

. . L . such an example.
Again the interpretation is clear—the available phase space

for one particular fermion is reduced with an amotnby
each of the other particles present in the system. This is
consistent with the semiclassical interpretation, where each |n the preceding sections we have discussed how a phase-
quantum state is associated with a phase-space volume space description, with a classical statistics parameter, can be
Note that there is a maximum number of particles allowedderived from a(constrainefl quantum description. In this
N=2j+1, in which case the phase-space voluf8&53  section we will consider a somewhat different system; a clas-
vanishes. This corresponds to the situation where all the lowsical field theory with soliton solutions. The system we have
est angular momentum states are filled, i.e., to a filled lowesh mind is the Chern-Simons Ginzburg-LanddaGSGL)
Landau level. Thermodynamically this state is interpreted agheory, originally introduced as a field theory for the quan-
being incompressible, as we will discuss further in Sec. V. tum Hall effect[17], with vortices(quasiparticlesas soliton
Finally we consider the case of anyons. A complete set oolutions. In a certain approximation the dynamics can be
LLL anyon wave functions on the sphere corresponding tajescribed in terms of vortex coordinates alone, and a phase-
Eqg. (3.23 in the plane is given by space description can be derived from the full theory. In this
description the vortices will be associated with a nontrivial
v _ — — it (W2)(N-1 classical statistics parameter, and we will show that the value
‘I’m(ﬁj—iﬂj (zi—7) H (1+27) 1" AEs,@). of this parameter agrees with the value of tgeiantum
(3.549 fractional statistics parameter usually associated with quasi-
particles of the quantum Hall effect. In this derivation we
Following the steps leading from E.23 to Eq.(3.30, we  will make use of the close connection which exists between
get the anyonic version for E¢3.35), the CSGL Lagrangian and the Lagrangian of the relativistic

space volume,

IV. VORTEX STATISTICS
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abelian Higgs model discussed by Samols, Manton, and oth-

ers[5,6,18. The metric of the vortex space is the same in Ay— ﬂAO, A p—'&,
these two cases and it is Klar [5]. We make use of the m K
results of Mantor{6] for the volume of theN-vortex space, (4.5
to determine the classical statistics parameter of the vortices. r—-\/—r, t— ﬂt,
The field theory Lagrangian, which describes fields in a Po fipo
(2+1)-dimensional space time, is
L—r22o
m

. 2 2 A 2 2
'ﬁ¢*D0¢_ﬁ|D¢| _Z(|¢| —po)

L:szx

+uhet’a,a,a,

, 4.9

whereg is a complex matter fielda,, a Chern-Simons field,
m a mass parametex, the interaction strengthy, the pre-

ferred density of the system anda statistics parameter. In
this classical field theoryt only plays the role of a dimen-
sional parameter. For the original Laughlin quantum Hall

The single dimensionless parameter in the rescaled Lagrang-
ian isX = (um/A?)\.

There is no independent dynamics associated with the
Chern-Simons field, since variation with respecagaives a
relation between magnetic field aicharge density, which
can be written as

B+(%P_Bext):01 (4.6)

states described by the model the statistics parameter tak@ith p=|¢|>. We assumeB.,=1/2 to givep=1 andB

the valuesu=1[4m(2k+1)] with integerk. D, andD de-
note covariant derivatives

D a+'
0 ot IaOv
(4.2
D=V-iA,
with
O
A=a+ Ao 4.3

Aey: describes a constant external magnetic fielg,,,
which we assume is adjusted to fit the parametgso that
the ground state is described by a constant fielof density
po Wwith vanishing effective magnetic field,B=b

+(e/f)Bay=0. The physical interpretation is that the sys-
tem is at(or close t9 the center point of a quantum Hall

plateau.
It is convenient to change to dimensionless form,

sz d?x

uvp
+e*"Pa,d,a,

1. X
1*Do¢p—5|D¢*~ 7 (|4[*~1)?

, (4.9

=0 in the ground stat@ll fields in dimensionless formFor

finite energy configurations these values are reached asymp-
totically. With this assumption the constraint equatidb)

for B is rewritten as

B+1(p—1)=0. 4.7

For stationary states the energy can be expressed as

E=fdzx[g|o+¢|2+%s+<i—1>52], 4.9

with D, ¢=(D;+iD5,) ¢. The energy has the lower bound

Ezjd%éBzNw, (4.9
whereN is a non-negative integer. For the special value

=1 of the coupling the lower bound can be saturated. The
field ¢ then satisfies the linear differential equation

(4.10

The two equation$4.7) and(4.10 define(for x= 1) station-

ary vortex configurations with vortices of equal circulation
[19].° Since the configuration€or fixed N) are degenerate

in energy, the vortices can be regarded as noninteracting.
Gauge-equivalent configurations may naturally be consid-
ered as physically equivalent, and the vortex space can then
be identified with thémoduli) space obtained from the space
of field configurations after the identification of gauge-

D, $=0.

where the new Lagrangian is obtained from the original oneequivalent configuration$5]. A point in vortex space is

by the substitutions

d—pod,

identified by the set ofN (unorderegl vortex coordinates
which corresponds to zeros of the fiefd

For values ofx close to 1 the low-energy configurations
correspond to slowly moving vortices. A meaningful ap-

8Although the theory is nonrelativistic, we choose to use a rela-

tivistic notation for the CS field witla,= a’ a=—a (i=1,2) and
b = Eij ‘9i aJ .

We have choseB,,, to be positive. With the opposite sign the
lower bound is saturated with vortices of opposite circulation.
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proximation is then to impose Eqgt.7) and(4.10 as con- allowed to be complex. We will refer to the corresponding
straints on the field configurations. The constrained field¢ransformations as complex gauge transformations, with
describe a system of weakly interacting vortices. In éie  I'(u) as the projection onto this complex subspace, and we

=0 gauge the Lagrangian takes the form will refer to the directions defined by the gauge transforma-
tions (4.18 as vertical directions. The orthogonal directions
L= j d2x[i p* ('ﬁJ“'&X ('&_5\ t)_(x_ 1)B?]— N (horizontal directionsare defined by variations in the field
ex .
(4.1 Ohu=(0¢,0A), (4.19

Due to Eq.(4.7) this Lagrangian is invarianup to a total  Which satisfy(J,u| 5,u) =0, implying
time df:riv:i\tivez under time-dependent gauge transforma- 20,6A+i¢* 5¢=0. (4.20
tions, A-A+V¢, p—e'tp, and can therefore be inter-
preted as the vortex Lagrangian defined on the space
gauge-equivalent field configurations.

gihe real part is

o o
It is useful to consider the two fieldg andA as compo- V- 6A+ §(¢* Sp— pSp*)=0, (4.2
nents of a complex two-component fidldl,
& and the imaginary part is
= 1
LA 4.12 5B+ 5p=0. (4.22
with A as the complex field=A;+iA,. A Hermitian scalar Changes in the fields which follow from variations in the
product is introduced as vortex coordinates will automatically satisfy the second
equation,(4.22), due to the constraini.7). The first equa-
(u|v)=f d?xu'y. (4.13  tion, (4.21), can be satisfied provided we make use of the
freedom to includeeal gauge transformations in the varia-

With thi . | i derivati he Kineti tions of the fields. Thus, we may assume both these equa-
Ith 1 ISh notation, up to toﬁ time g;\lv:_ﬂlvez the KInetic jons or equivalently Eq4.20), to be satisfied whedA and
term in the Lagrangiafii.e., the part with time derivativés 5, are replaced by the corresponding derivatives with re-

can be written as spect to vortex positions.
i ‘ We introducell(u)=1—-T(u) as the projection onto the
T=1{U—UgydU), 4.1 . o . .
( exd W) (4.19 horizontal directions and;=114; as the projected deriva-
With Ugy= (0,Aexy) . tive. With the assumption that the gauge conditidrl) is
The vortex configurations are described by a set of vortessatisfied the vector potential; can be written as
coordinatesx={x4,X,, . .. X,}, with x; corresponding to A =i{U—UgDyu). 4.23

two real or one complex coordinate of vortexThe precise
form of the multivortex configurations for given coordinates |t transforms under écompleX gauge transformatioy as
is not known, but their existence[i&9]. The kinetic term for

these configurations can be written Ai— Al = A= 3,0 (4.24
T=A4(X)X;, (415  with
where the new vector potential is ®:f d2X[ ¢* p+ 2 A A* — A%, ). (4.25

Ai:i<u_uext|‘9iu>:i<u|aiu>_‘9i<uext|u>- (4.19 ] o ]
) o o This means thaf;; is invariant under complex gauge trans-
and where the differentiation now is with respect to the vor-formations and can be written as
tex coordinates. The corresponding field tensor which de-
fines the symplectic form and the phase-space structure of Fij=—2Im(D;u[D,u), (4.26

the vortex space is since the difference betweenu and D;u can (locally) be

Fij=0iAj— 0, A= —2Im(d,u|9;u). (4.17  eliminated by a(vortex-position-dependengauge transfor-
mation.
The vortex space is the space of gauge equivalent field We may consider the quantity
configurations which satisfy Eq$4.7) and (4.10. Let us
reconsider this gauge equivalence in terms of the complex 7i;=(Diu[D;u) (4.27)

fields u. The infinitesimal gauge transformations have theas defining a Hermitian metric tensor for the vortex space. It

form is obtained from the scalar produ@.13 by projection on
S,u=(ix$,20:x), (4.18 the horizontal directions. The tensg; , which is derived
from the kinetic part of the Lagrangian, and which defines
with x a real function, so the vecto&u define a real vector the phase-space structure of the vortex space, can now be
space. This can be extended to a complex vector spacesif identified with the imaginary part of this metric tensor.
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The metric(4.27) is relevant also for the relativistic abelian ds?= —2i F¢, dzdz;, (4.33
Higgs model, as we shall now demonstrate. The Lagrangian: o
of this model has the form with
1 1 -7—7izj:i[(DZU|DZJ-U>_<DZJ-U|DZU>]- (4.34
= AV Ll p Y )" S y72%
L fd X Z(D”d’) D%¢ 4F’”F The corresponding Kder two-form is
23 -1 w=—F5,dz/\dz . (4.35
T8 (|¢|2—1>2} (4.29 " :

The Kéhler form determines the symplectic structure and
ghe volume of the vortex space. ThisN&limensional vol-

It is quadratic in time derivatives and has the Chern-Simon . . .
me is the same whether the vortex space is considered as a

field replaced by a Maxwell field. The energy has the Samécionfiguration spacé.e., with the volume determined by the

lower bound(4.9) as the GLCS model, and for=1 this  (g4| part of the metricor as a phase spaceith the volume
lower limit is saturated if both the equatiot®7) and(4.10,  determined by the imaginary parand has been calculated
known as the Bogomolny equations, are satisfied. Thus, iy Manton[6] for N vortices on a sphere. The resuft’s
these equations are used to define bigortex space, the
vortex space is the same for the two models. However, the
kinematics, as defined by the kinetic part of the Lagrangian,
is not the same in the two cases. The nonrelativistic model is

linear in time derivatives, which means that the vortex spacé"itlh A a:, :gthehvolur:ne(area ?f the o(rj\_e—vorteﬁ sp%ce. Lh?
has the character of a phase space, while the relativistit®!Ume(4.38 has the same form as discussed in Sec. Il for

model is quadratic in time derivatives, which gives the vor- identical particles with nontrivial classical statistics. With
tex space the character of a configurétion space the vortex space interpreted as a phase space, the statistics of

Exor d in thed —0 nd constrained by th the vortices can be extracted from the reduction teriNg.
presse 0 gauge and constrained by e, oqer to do so correctly we have to rewrite the volume
Bogomolny equations, the Lagrangian of the Higgs modet4_3@ in dimensional form. The phase-space volume is de-
has the form termined by the Lagrangiat.4), and as follows from the
L'=T'—V, (4.29  transformations(4.5 the phase-space dimensions are cor-
rectly reintroduced by the substitutiods— ufiA and V)
with —(uh)NVy. In dimensional form the expression for the
N-vortex volume is

1 2 N
V=g [A-87(N=D1)TY, (4.36

1 . - S>05
T'=—f d’x[ ¢* p+A-A], 1
2 VN=m[A—47-r,uh(N—1)]N, (4.37)
(4.30 :
V=f d?x(N—1)B?+ N, and the classical statistics parameter as determined by the
reduction in available phase space due to the presence of
and the fields constrained by Gauss’s law other vortices therefore is
o a=4m7uh=gh. (4.38
S ONL (ko pk pN
VoAt 2(¢ ¢= ¢ ¢)=0. (4.30 We can interpret, the classical parameter divided hyas

the dimensionless quantum statistics parameter. The value
The potentialV is the same, but the kinetic terfif is dif- g=4mu agrees with the value of the statistics parameter as
ferent from that of the CSGL model. We note that the con-determined from Berry phase calculations with Laughlin
straint (4.31) corresponds to the real pa#.21) of the con-  wave functiong20], or from the properties of vortices in the
dition for motion in horizontal direction. Also the imaginary CSGL model[17].
part(4.22 is satisfied due to the Bogomolny equations. The
constraint on the motion, given by Gauss’s law, can be ex-
pressed in terms of the projecti(Fh and the fieldu as A. Entropy and pressure of identical particles

V. STATISTICAL MECHANICS

, 1. S We have already emphasized that even if the classical
T'= 5 (ullT|u)= 5xx;(D;u[D;u). (432 equations of motion, and thus tisassical dynamicsdo not
depend on the classical statistics parametethe statistical
The kinetic termT’ is different, but is related to the ki- mechanicgand thus the thermodynamjcdoes. In this sec-
netic termT of the CSGL modelT’ is determined by the
real part, wherea3 is determinedup to a gauge transfor-
mation by the imaginary part of the same Hermitian metric 19anton’s result has been changed with a factorr)® to fit the
(4.27). This metric has been examined in some detail bygefinition of the metric in this paper. We also expressiheortex
S§m0|3[5] for the case of the abelian Higgs model. It is avolume in terms of the single-vortex volurderather than the area
Kahler metric, which is conveniently expressed in terms ofof the sphere. This gives a factbr—1 instead ofN in the second
complex vortex coordinates as term of Eq.(4.36.
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tion we demonstrate this by first calculating the entropy ando a completely filled Landau level. What is unusual about
pressure in the two model systems considered in Secs. lthis is that the blocking, which can be interpreted as repre-
and IV, charged particles in the lowest Landau level, andsenting a generalized Pauli principle, shows up not only in
vortices in the CSGL model, respectively. The results of thighe quantum but also in the classical description of the sys-
calculation fit nicely into the general framework of “frac- tem.

tional exclusion statistics” for particles with degenerate en-

ergy levels, and we briefly review the basics of this topic

before further discussing our results. B. Exclusion statistics and the classical limit

We assume the interaction strength to e 1 for the The generalization of the Pauli exclusion principle intro-
CSGL theory. The vortex system is then degenerate in erduced by Haldand4], usually calledexclusion statistics
ergy. That is also the case for a system of anyons in thstates that in the presence of particles in a set of given quan-
lowest Landau level. Thus, both these systems have the spitm states, the number of available one-particle states for any
cial property that the energy does not depend on the stategw particle added to the system is reduced. More precisely,
but only on the number of particles. This means that thehe addition ofAN particles changes the number of available
statistical mechanics is determined by the phase-space vdtatesdy according to
ume Vy, which has been determined in the previous sec-
tions, and by the enerdyy . The classical partition function Ady=—gAN, (5.6
is simply the total number of state¢, /hN, multiplied with

the Boltzmann factor, i.e., whereg is the exclusion statistics parameter. The statistical

weight, or number of states available for the fiMHiparticle

ZN:ﬂe*BEN_ (5.2 system, is given by the formula
hN
The following simple expressions for the free enefgyand [G+(1—g)(N=D)]!
the entropyS immediately follow: W= NI[G-—gN—(1—-g)]!" (5.7

F=En—TIn(Vy/hN),
(5.2 whereG is the number of single-particle states. Clearly Egs.

(5.6) and (5.7) reduce to standard expressions wigea0

where Boltzmann’s constant is set to unity. The pressure i%for bosons, with no exclusigrandg =1 (for fermions, with

usually defined by = — (9F/V)7, where is the volume otal exclusion. There exist sométheoretical realizations
= -

of real space, but in the systems we have considered the re%fl exclusion statistics for particles in one dimensigre.,

two-dimensional space where the particles or vortices mov V\'Itc?\E\E’;’Iﬁﬁ;mg22'02%532‘:‘%253?:rtk?ed;ffgzm g;):nﬂ:)issecon-
is proportional to the phase space, so we simply define th : P SY y
pressure as ined to the lowest Landau level, which we have already

considered4]. In that case the exclusion statistics parameter
IF aIn(Vy/hV) g is identical to the anyon statistics parameter _
=— (ﬂ) =T (5.3 The statistical mechanics of particles with exclusion sta-
tistics can be derived from the statistical weig@ht7) when
the total energy can be written as a sum of single-particle
‘energies and Eq(5.7) is applied separately tdsingle-
particle energy level§21-23. The result for the entropy is

S=In(Vy/hVY),

T
whereA=V, is the phase-space volume for a single particle
Substituting the result€3.57) or (4.37), we get

S=Nln(1—ap)+NIn%—NlnN+N, (5.4)
S=2k Dif[1+(1—g)nJIn[1+(1—g)ny]
p
pP= 1—ap’ (5.5 +(1-gnyIn(1—gn)—ngInny}, (5.8

wherea= vh or gh, and where we have introduced the clas-

sical phase-space densjty=N/A and neglected the differ- where the sum runs over single-particle energy stddgss

ence betweeM and N—1, which is irrelevant in the ther- the degeneracy of thieth level and theguantum distribution

modynamic limit. function n, is the average occupation number of the state
The expressioifs.5 shows that there is a maximum den- ~ Since each quantum state occupies the phase-space vol-

sity p= 1/« allowed by the system, which corresponds to anumeh”, with 2D the dimension of the single-particle phase

infinite pressure and therefore to an incompressible state. Fepace, we can relateand p in the semiclassical limit by

the phase-space volume this meaqs=0, i.e., there is no =ph”. In the Boltzmann limith—0 andn—0, all depen-

available phase-space volume for any new particle added tdence org in Eq. (5.8) goes away. If we, however, define the

the system. For the anyon system this situation corresponddassical physics by the double limli—0, g—», and
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ghP—a, where « is interpreted as a classical statistics can be determined as a function of the single-particle vol-
parametéeft Eq. (5.8 gets a nontrivial limit of ume, a classical statistics parameter can be defined as the
reduction in available phase-space volume for one particle

S=, D[ pxIn(1—ap) —peIn(ph) +pel. (5.9 Py the presence of the others. Viewed in this way this clas-

K sical statistics can be regarded as an analog of exclusion
statistics. In the specific examples we have considered, this

in a two-dimensional phase space, where the sum is simpl lation can be made more specific and the classical statisti-
replaced by the total number of available single-particle al mechanics derived from this can be seen as a special way

states,G=A/h, and wherep, is replaced byN/A, we ex- to take classical limit of exclusion statistics.
actly regain Eq.5.4). This demonstrates that the classical To make this idea more precise we have considered cases

stafistical mechanics discussed in the preceding section c4¥{'€"€ the classical mechanics can be derived from the quan-

be regarded as a special limit of exclusion statistics, differenfuM description by constraining the motion in Hilbert space

from the Boltzmann limit. to (generalizell coherent states. For bosons, fermions, and
An alternative way to see the correspondence is to staffVeN anyons with a two-dimensional phase-space the La-

from the the equation of state for exclusion statistics particlegr@ngian can be derived and the phase space volume can be
with the same energy, calculated. The dimensional, classical statistics parameter,

defined as the volume occupied by each particle present, in
) (5.10 these cases are s_imply_ the dimensionless quantum statistics
’ parameter multiplied with Planck’s constant In another
example, vortices in CSGL theory, there is no such underly-
ing point particle description, but a similar classical Lagrang-
ian can be found and the classical statistics parameter can be

If we further specialize to the case of fully degenerate state

1+

p=2|
pP=5n 1-gn

wheren=N/G. Introducing the densit§>= N/V and taking
the double limit defined above, we get

P related to the coupling of the Chern-Simons term.
BP= — (5.11 There are several interesting questions raised by this de-
1-ap— scription.
Vi (i) Is the “classical fermion” description useful in some

cases? This description would correspond to retaining the
fermions’ ability to occupy phase space, but otherwise treat
Eq. (5.5 them as classical particleA classical electron would then

In the Appendix it is shown that even in a nondegeneratd® characterized both by a charge angtlassical statistics
case, with particles in a harmonic oscillator potential, theParamete.Can the description give a useful approximation
classical statistical mechanics, defined as in Sec. VA, coinfor other objects, like vortices in superfluids or supercon-
cides with that of exclusion statistics when the classical limitductors?
is taken in the way discussed above. Clearly what is impor- (i) In the examples we have studied the phase space is
tant for the connection with exclusion statistics is the twotwo dimensional, but the formalisitiike for exclusion sta-
defining relationg5.6) and (5.7) that determine the number tistics) does not seem to depend in any crucial way on di-
of states in the system. In the classical description they arsension. Are there nontrivial higher-dimensional examples?
represented by the expressions for the phase-space volun{€ermions in two and three dimensions can certainly be rep-
and by taking the limih— 0,ghP— « it is straightforward to  resented like this.
demonstrate that Eq$5.6) and (5.7) reproduce the expres- (i) What about quantizing such a classical theory? In the
sions for the phase-space volume derived in Secs. Ill and I\cases we have studied, with alder metric defined on phase

space, a quantum description can presumably be derived in a
V1. DISCUSSION unigue way by use of analyticity properties. When regarded

In this paper we have described a way to encode the paﬁs_ a “requantization” of th_e system, how do_es it rglate to the
ticle statistics in the classical Lagrangian of a many-particlé’Tiginal quantum description. What would, in particular, the
system. The important point is that the Lagrangian includeguantum description of the CSGL vortices be?
more information about the system than just the classical All these questions seem to merit further investigation.
equation of motion. It also gives information about the vol-
ume of the phase space, which in the quantum description
corresponds to the number of states. If Myparticle volume S.1. acknowledges financial support from NATO granted

by the Norwegian Research Council. S.I. also appreciates the

warm hospitality of NORDITA, during his stay there in the
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mechanical description be characterized by a dimensionless char@@1ysics, Norwegian University of Science and Technology,
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particle phase-space volun#e so thatp=p, we reproduce
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APPENDIX: HARMONIC-OSCILLATOR POTENTIAL

_ v N
H=hwo>, Zidz+hag SNIN-D+ 5. (A7)
|

In this appendix we consider the statistical mechanics of
particles in a harmonic-oscillator potential. The particles are . )
“classical anyons” in the sense discussed in Sec. lll, i.e., the Nus the difference between these two cases is only an over-
one derived from quantum anyons in the lowest Landa@ll N-dependent shift of the energy spectrum. _
level. The system can also be interpreted as a coherent state The energy of the classical description is determined by
representation of particles in a one-dimension harmonicthe matrix elements of the HamiltonidAd),
oscillator potential, in a form interpolating between bosons _ 2
and fermions. We calculate the partition function of the V(@) =(ZRI2INA
N-particle system and show that this is related to the partition
function of a(quantum system of particles with exclusion
statistics in a harmonic-oscillator potential by the same cor-
respondence as obtained in Sec. IV.

The wave functions of the lowest Landau level have the X |Nz,21_2}|/\/z,%fz
form

Y N(N=1)+
N(N=D+ 3

ﬁwz 797+ hioy
I

v N
=tw, Zioz NNy 2+ fw, SN(N-1)+ 5
|

vzD=11 @-7)"t@e 77, (A1)
i<j

(A8)
with f(z2)=f(z,, ... ,zy) as a general antianalytic function . - L
of the complex particle coordinates. It is assumed to be sym"Zlnd theN-particle partition function is
metric in the variables. We introduce analytic basis vectors 1 oN
—__ | __a— BV
by ZN—hNJ N (A9)
(Zdyy=12. (A2) _ _
wherew is the symplectic form
The basis vector§z,, ... ,zy) are not normalized, but we B
assumev to be chosen such that they are regular and nonva- w=- ffizjdz/\dzi ' (A10)
nishing at points of coincidence of particle positions. Nor-_ .
: . with
malized vectors are introduced by
fop =ii070, In| Nz ~2. (A11)

| lpzﬁ :NZE}Z>’

(A3)  The form of the energy makes it possible to evaluate the

—-2_
N2 “=(72). integrals in the expression for the partition function. We
Defined in this way|\,3 2 is a regular function with no write it as
zeros anywhere iiN-particle space, and the Ker potential e BV
K= In|M 2 is a regular function everywhere. ' In=—x eij,,,kf d?z,- - 'dZZN[afiazl
The Hamiltonian depends on two frequencies, the cyclo- 7 N!
tron frequencyw, determined by the external magnetic field —2 s
and the frequencyn, of the additional harmonic-oscillator XIn| A 9202y In| Nzt 7]
potential. When acting on the antianalytic paft) of the
wave functions of LLL, the Hamiltonian has the form ><exp[ -B ﬁwZ Zidy, |n|/\[ﬁ|2”_ (A12)
H=%(w,— wC)E Zio5+ho, gN(N_ng (A4)  The partition function can be rewritten as
i 1
1 e PN ) )
ZN:——e"ka’ d<z;- - -d°zy
=hw, Zioz+ VR, (A5) (=Bhw) NNt
I
- — JolT 0k o= 0 X—d5| IN|Ny2 72650, In|N,2 2
with 0= Jwi+ w0 o=w;—o, and Vy the quantum- 7, & ' KN :

mechanical ground-state energy

Xexp[—ﬂ(ﬁwEi zd, In|sz‘2>”, (A13)

Vo=tiwy . (AB)

Y N(N=1)+
ZNIN=D+ 3

and by use of the identity
For a system of particles in a one-dimensional harmonic- 1 1
oscillator po_tential the Hamiltpnian is essentially the same, =0 — —mw8(2y) 854 (A14)
except that it depends on a single frequengy Z; °
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the integration over; can be performed oo *

Zy=e PNY S S ek
—p\° 11=0 I>=I3 IN=IN-1
m e N
IN="F7— €. fdzz ..d’z N -1
NT Bl NNy TR T N —e AN [T (1—e "Be) (A18)
n=1

-2 -2
Xw?i&zz NNz 7302 Izt ] This expression shows that in the linit-0, with # v fixed,
the partition function(A18) of the quantum system coincides
><exp[ -B wz z;d,, InINﬁ}ZH. (A15)  with the classical partition functiofA15). (Note, however,
: that the classical function depends brexplicitly, not only
through the statistics factat=hv, due to the contribution
The (N— 1)-particle integral in this expression is of the samefrom the ground-state energy.
form as the originaN-particle integral, and by repeating the It is well known that the system of particles in the lowest
procedureN times we get the following simple expression Landau level can be regarded as a special realization of ex-
for the partition function: clusion statistic§4], and the correspondence between the
two partition functions discussed here is therefore essentially
the same as the correspondence between the classical statis-
1 _pV0 tical mechanics and the statistical mechanics of particles
ZN:(—Ne N with exclusion statistics discussed in Sec. IV. If we use the
Bhw) N! ; : :
harmonic oscillator as a volume regulator the relation be-
tween the discussion in this Appendix and in Sec. IV be-
comes even more direct. The thermodynamic limit is here
taken by interpreting the limiby— 0 in a specific way24].
(A16) For the guantum case the harmonic—oscillator regulator has
been used if22], and the expressions for the entropy and
equation of state of anyons in the LLL were found in this
The classical expression for the partition function can beyay. Due to the correspondence between the quantum and
compared with the partition function of the quantum systenclassical descriptions, the thermodynamic limit of the classi-
cal functions with the harmonic-oscillator regularization will
Zy=Tre A" (A17) _be identical to the correspondin_g functions of Sec. IV. Tha_t
' is what should be expected, since for the thermodynamic
limit it should be of no significance whether volume regular-
with H given by Eq.(A4). This expression is easily evalu- ization is done by confinement to a sphere or by confinement

1

= —(ﬁhw)NN! exp{ — Bhw;

U N(N=1)+
ZNIN=D+ 7

ated, since it can be written as in a harmonic-oscillator potential.
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