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Classical phase space and statistical mechanics of identical particles
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Starting from the quantum theory of identical particles, we show how to define a classical mechanics that
retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall
effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau
model. In both cases the resultingclassicalstatistical mechanics is shown to be a nontrivial classical limit of
Haldane’s exclusion statistics.
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I. INTRODUCTION

Particle statistics is usually considered to be a quan
effect. It is expressed through the symmetry of the wa
function of a system of identical particles and does not
pear, normally, as an interaction in the Hamiltonian. In tw
space dimensions it can be represented as a special kin
interaction, but being of the Aharonov-Bohm type, it do
not give rise to any force on the particles.

Thus, at the level of classical trajectories of individu
particles, there is no difference between identical and n
identical particles. There is, however, one place in the c
sical description of particles where their indistinguishabil
is important, namely in the statistical mechanics. There
trajectories of individual particles no longer matters, but
volume of the available phase space is important for ther
dynamical quantities. Indistinguishability is introduced
dividing the phase-space volume ofN nonidentical particles
with the factorN!. This reduction is essential to give th
correct expression for the entropy and thus to reso
Gibbs’s paradox.

The reduction in phase space is readily understood. If
particles are indistinguishable all configurations that can
related by a permutation of the particles correspond to
and the samephysicalconfiguration. This single configura
tion for identical particles is then represented asN! different
configurations in the case of distinguishable particles. T
configuration space of indistinguishable point particles
therefore derived from the space of distinguishable partic
by an identification of equivalent points.

The identification of points implies that the configuratio
space of a system of identical particles is not everywher
smooth manifold, there are singularities corresponding to
situation where two or more particles occupy the same p
in space. Such a point is a geometrical singularity, a poin
infinite curvature. For the phase space the situation is sim
the identification of points introduce singularities, althou
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in general these singularities do not have the same sim
geometrical interpretation as in configuration space.

The quantum description of identical particles can be
troduced in terms of wave functions, or alternatively in term
of path integrals, defined on the configuration space w
identifications@1,2#. The presence of singularities then a
important, since it divides the continuous paths into differe
classes, depending on how they evolve around the singu
ties. Such classes can be associated with different phase
tors. There is only one characteristic phase factor for e
system of identical particles, corresponding to an excha
of two particles, and this factor identifies the statistic
Viewed in this way, the statistics parameter associated w
the particles labels inequivalent quantizations of the class
system. Thus, the statistics parameter appears in the qu
zation of the system and is not present in the classical
scription of the particles.

In this paper we will discuss an alternative approach
the classical description of identical particles. This does
mean that we consider the standard description of point
ticles referred to above as being in any sense incorrect. H
ever, we would like to stress that starting from the quant
theory there are different possibilities for describing the c
responding classical system, and we would like to exam
one where the statistics parameter is present also at the
sical level. As discussed in the paper we may view this a
nonstandard way of taking the classical limit.

The way we introduce the classical description is to co
sider, in a general form, a coherent state representation o
quantum system. We assume the coherent states to be d
mined by a set of particle coordinates, and we further assu
the time evolution~in the low-energy regime! to a good ap-
proximation to be described simply by the motion of the
coordinates. There is a manifold defined by the set of p
sible coordinates and a natural phase-space structure in
ited from the full quantum description. This phase space
smooth manifold, even when the particle coordinates co
cide, and the reduction corresponding to the factor 1/N! does
not have to be introduced by hand, but appears natur
when calculating the phase-space volume.

To clarify this idea, we consider the case of a harmon
oscillator coherent-state representation of a system of ide
cal point particles in some detail. We show how the class
description introduced in this way distinguishes betwe

w
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HANSSON, ISAKOV, LEINAAS, AND LINDSTRÖM PHYSICAL REVIEW E 63 026102
bosons, fermions, and in general anyons@2,3#, and we calcu-
late the available phase-space volume for the case ofN iden-
tical particles in a finite volume. The classical statistics p
rameter is then identified as the phase-space volu
occupied by each of the particles present in the syst
Viewed in this way the description has the character o
classical analog of the quantum exclusion statistics in
duced some time ago by Haldane@4#. We examine this cor-
respondence in some detail by considering the statistical
chanics of our classical system.

The description we use is not restricted to systems
point particles. We illustrate this by considering vortex so
tions of the Chern-Simons Ginzburg-Landau theory. T
manifold defined by theN-vortex configurations has a natu
ral phase-space structure, and although this cannot be
determined, the phase-space volume can be calculated
the statistics parameter identified. This particle description
vortices is closely related to a description of vortices in
~relativistic! abelian Higgs model previously discussed
Samols, Manton, and others@5,6#, although in their case the
vortex manifold is identified as a configuration space rat
than as a phase space.

II. CLASSICAL PHASE SPACE
FROM THE QUANTUM DESCRIPTION

In this section we consider a general quantum system
a subset of statesucx&, which is indexed by a set of coord
natesx5$x1 ,x2 , . . . ,xN%. These may be the coordinates
a system of~identical! particles or the coordinates of anN
soliton configuration, but we do not have to be more spec
at this point. We only assume that the wave function evol
smoothly with a change of these coordinates, and that
symmetric under an interchange of any pair of theN coordi-
nates. Furthermore, we assume that in the regime of inte
~typically at low energies!, the time evolution of the system
to a good approximation, can be described~up to a phase
factor! as a time evolution of the coordinates only. Th
means that it makes sense to consider the restricted~con-
strained! system where the evolution of the system is p
jected to the manifold defined by the normalized statesucx&.
Since the physical states correspond to rays in the Hil
space, i.e., to state vectors defined up to a complex factor
consider the classicalN-particle spaceM, derived from the
quantum description, to be defined by the normalized st
ucx& only up to such a phase factor. It is the phase-sp
structure of the spaceM which will be of importance for our
discussion.

The Schro¨dinger equation of the quantum system can
derived from the Lagrangian,

L5 i\^cuċ&2^cuHuc&, ~2.1!

whereH is the Hamiltonian of the system, and the Lagran
ian of the constrained system is obtained from this by
stricting uc& to the subset of statesucx&. Expressed in terms
of the coordinatesx, it has the generic form

L5 ẋiAi~x!2V~x!, ~2.2!
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whereAi is the Berry connection@7#

Ai5 i\^cxu] icx&, ~2.3!

] i denotes the partial derivative with respect toxi ,1 and the
potentialV is the expectation value of the Hamiltonian in th
state ucx&. The equation of motion derived from the La
grangian is

f i j ẋ j5] iV, ~2.4!

with

f i j 5] iAj2] jAi . ~2.5!

Under the general condition thatf i j is an everywhere invert-
ible matrix ~which in particular means that the spaceM is
even dimensional!, a Poisson bracket can be defined and
symplectic structure introduced onM. The bracket has the
form @8#

$A,B%5~ f 21! i j ] iA] jB, ~2.6!

and the equation of motion can then be written as

ẋi5$xi ,V%. ~2.7!

The corresponding symplectic form is

v52
1

2
f i j dxi`dxj , ~2.8!

and in particular this determines the phase-space volu
Thus, under the general conditions mentioned, a class
phase space can be derived from the quantum descrip
Note, however, that it is a generalized phase space in
sense that no configuration space has been identified.

The symplectic structure of the manifoldM has a simple
geometric interpretation. It is defined as the imaginary p
of the scalar product in the tangent space ofM, which is
obtained by projection from the Hilbert space of the fu
quantum system and can be written as

f i j 522\Im$^DicxuD jcx&%, ~2.9!

with Di the projected derivative,

uDicx&5u] icx&2ucx&^cxu] icx&. ~2.10!

Written in this form, it is manifest that the symplectic form
defining the classical kinetic energy, only depends on
properties of the projected subspace. The real part of
scalar product gives another, related structure onM, which
can be interpreted as a metric@9#,

gi j 52\Re$^DicxuD jcx&%. ~2.11!

1We use a shorthand notation by treatingxi as a single parameter
In reality the phase-space for each particle will be multidime
sional.
2-2
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CLASSICAL PHASE SPACE AND STATISTICAL . . . PHYSICAL REVIEW E 63 026102
This construction provides a natural way to introduce a m
ric on the phase space, and makes it possible to discus
geometry.

At this point we will introduce an assumption about t
geometrical structure ofM, which leads to a simplification
in the discussion to follow. We assumeM to be a Kähler
manifold. This has several technical implications, but
will only use that there is a complex structure onM, such
that the symplectic and metric structures referred to ab
are the antisymmetric and symmetric part of the same c
plex Kähler metric. In terms of complex coordinates onM,
we then get the following expressions for the symplec
form and the metric:

v52 f z̄i zj
dz̄i`dzj ,

~2.12!
ds2522i f z̄i zj

dz̄idzj ,

with

f z̄i zj
5] z̄i

Aj2]zj
Aī . ~2.13!

This tensor can further be expressed as

f z̄i zj
5 i ] z̄i

]zj
K~z,z̄!, ~2.14!

whereK(z,z̄) is the Kähler potential.
The condition thatM is a Kähler manifold is satisfied

when the state vectors which define this manifold are, up
normalization, analytic functions ofzi ,

ucz&5N~ z̄,z!ufz&, ~2.15!

whereufz& denotes the analytic part of the state vector a
N( z̄,z) is the normalization factor. The vector potentials a
then given by

Ai52 i\]zi
ln N̄~ z̄,z!,

~2.16!
Aī 5 i\] z̄i

ln N~ z̄,z!,

and the Ka¨hler potential is related in a simple way to th
normalization factor,

K~ z̄,z!5\ lnuN~ z̄,z!u22. ~2.17!

III. COHERENT STATES OF IDENTICAL PARTICLES

We now illustrate the general discussion by consider
coherent states of the one-dimensional harmonic oscilla
or equivalently, charged particles moving in two dimensio
in the presence of a strong magnetic field that restricts
available states to the lowest Landau level. In this exam
we can explicitly derive the metric and symplectic structu
and show that they can be obtained from a Ka¨hler potential.

We first define the coherent states for bosons and fe
ons and derive the corresponding classical mechanics. T
is no unambiguous way to define coherent states for any
but we will use a construction which is very natural in th
02610
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context, and again study the corresponding classical mec
ics.

Since we are interested in the statistical mechanics,
also want to calculate theN-particle phase-space volumes
the different cases. For this, it is necessary to start wit
finite volume, and then take the thermodynamic limit. The
are two obvious ways to confine the system, either by
potential, or by restricting the motion to a compact surfa
In this section we shall consider the latter and study partic
moving on a sphere. The case of a harmonic confining
tential is treated in the Appendix.

A. Bosons and fermions in the plane

We shall use the notation of Ref.@10# and define a coher
ent state by translations of a minimum uncertainty refere
stateu0&. The translation operatorsD(z) form a unitary and
irreducible representation of the Heisenberg-Weyl gro
and in the following we shall use the following explicit rep
resentation in terms of creation and annihilation operator

D~z!5eza†2 z̄a5e2(1/2)z̄zeza†
e2 z̄a, ~3.1!

where@a,a†#51, andz is a dimensionless complex coord
nate. In addition to the obvious relationsD(z)†5D(2z) and
D(0)51, we shall need the following multiplication rule:

D~z1!D~z2!5e2(1/2)(z̄1z22 z̄2z1)D~z11z2!. ~3.2!

The coherent states are now defined by

uz&5D~z!u0&5e2(1/2)z̄zeza†
u0& ~3.3!

with a reference stateu0& which is annihilated bya. For
convenience we shall use a notation where the normal
coherent states are labeled byz only, although the normal-
ization factor also depends onz̄. This is to distinguish the
coherent states from the position eigenstatesuz,z̄&, and
should lead to no confusion. From Eq.~3.2! we immediately
get the overlap between two coherent states,

^z1uz2&5^0uD†~z1!D~z2!u0&

5^0uD~2z1!D~z2!u0&

5e2(1/2)(z̄1z11 z̄2z2)1 z̄1z2. ~3.4!

An unsymmetrized basis of N-particle coherent states is
fined by

uz&5uz1 ,z2 , . . .zN&

5D1~z1!D2~z2!•••DN~zN!u0,0, . . . ,0&

5e[ 2(1/2)( i 51
N z̄izi ]e(( i 51

N ziai
†)u0&. ~3.5!

NormalizedN-particle coherent Bose and Fermi states
symmetric and antisymmetric linear combinations, resp
tively,
2-3
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uz,6&5uz1 ,z2 , . . . ,zN&65N~zi ,z̄i !
1

AN!
(
P

hP
6ezi P

ai
†
u0&,

~3.6!

where the sum is over permutationsP and the sum in the
exponent over the indexi is suppressed. The permutatio
factorhP equals 1 for bosons and61 for fermions, depend-
ing on whether the permutation is even or odd. Note that
dependence onz̄i is in the normalization factorN, which is
given by

uN~z,z̄!u225 (
P,P8

hPhP8

1

N!
^0uez̄j P8

ajezi P
ai

†
u0&5(

P
hPez̄i P

zi.

~3.7!

Following the general discussion in the preceding sect
we write the classical phase-space Lagrangian~2.1! for the
N-body system as

L~z,z̄!5^z,6u i\] t2Ĥuz,6&, ~3.8!

where Ĥ is the quantum Hamiltonian. In the following w
shall use the harmonic oscillator as a simple illustration, i
we take

Ĥ5\v(
i 51

N

~ai
†ai1

1
2 !. ~3.9!

Using Eqs.~3.8!, ~3.9!, and~3.6!, we get

L~z,z̄!5 i\~ żabi ] z̄i
ln N2 żai ]zi

lnN̄!

2\vzi]zi
lnuNu222 1

2 N\v. ~3.10!

By varying with respect toz̄i one easily verifies that the
equation of motion is that of a harmonic oscillator, i.e.,żi
52 ivzi . We can rewrite Eq.~3.10! on the standard form
~2.2!,

L~zi ,z̄i !5 1
2 ~Az̄i

zGabi 1Azi
żai !2V~zi ,z̄i !, ~3.11!

and using the phase conventionN5N̄ the potentialsAz and
Az̄ and V can all be obtained from the Ka¨hler potential
~2.17!,

V~z,z̄!5vzi]zi
K~z,z̄!,

Ai~z,z̄!5
i

2
]zi

K~z,z̄!, ~3.12!

Aī ~z,z̄!52
i

2
] z̄i

K~z,z̄!,

with

K~z,z̄!5\ lnuN~z,z̄!u225\(
P

hPez̄i P
zi. ~3.13!

To get some insight into the meaning of these express
we first analyze the two-body case. Expressed in cente
mass and relative coordinates,Z5 1

2 (z11z2) and z5z1
2z2, the Kähler potential reads,
02610
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K~Z,z,Z̄,z̄!652Z̄Z1 ln@e(1/2)z̄z6e2(1/2)z̄z#, ~3.14!

where 6 refers to bosons and fermions, respectively. T
corresponding Lagrangians for the relative coordinate
now obtained using Eqs.~3.11!–~3.14!

LB~ z̄,z!5
i\

4
~ z̄ż2 ż̄z!tanh

z̄z

2
2

\v

2
z̄z tanh

z̄z

2
,

~3.15!

LF~ z̄,z!5
i\

4
~ z̄ż2 ż̄z!coth

z̄z

2
2

\v

2
z̄z coth

z̄z

2
.

Note that the fermionic Lagrangian is singular in the limit
small r 5Az̄z, i.e., when the particles come close togeth
This is, however, of no physical significance, since the s
gular piece is a total time derivative,

lim
r→0

LF5
i\

2
~ z̄ż2 ż̄z!

1

z̄z
5

i\

2
] t ln~z/ z̄!, ~3.16!

which can be absorbed inN as a pure phase~relaxing the
reality condition!, or equivalently, as a pure gauge term inAz
andAz̄ . From Eq.~2.14! we get for the symplectic two form

f z̄z
B 5

i\

2 S tanh
z̄z

2
1

z̄z

2 cosh2
z̄z

2
D →

r→`

i\

2
,

~3.17!

f z̄z
F 5

i\

2 S coth
z̄z

2
2

z̄z

2 sinh2
z̄z

2
D →

r→`

i\

2
,

where z5reif. Note that although the Ka¨hler potential is
singular in the fermion case, the metric is well defined.

In both cases, in the limit of larger, we retain the naive
flat metric, ds25\dzdz̄. Since we refer to relative coordi
nates this expression is reduced by a factor 2, as compar
the case of a single particle.2 ~Note that the appearance of\
in these classical expressions is due to the use of the dim
sionless coordinatez. As a more natural variable in the clas
sical description we may use the dimensional coordinatz̃
5A\z which then would remove\ from the expressions.!

The more interesting limit is that of smallr,

ds2 →
r→0

\@r2du21dr2# ~bosons!,
~3.18!

ds2 →
r→0\

3
@r2du21dr2# ~ fermions!,

2Our normalization is such that for a harmonic-oscillator Ham
tonian with m5v51, z is related to the usual coordinates an
momenta byz5(x1 ip)/A2\, so\dzdz̄5@(dx)21(dp)2#/2.
2-4
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CLASSICAL PHASE SPACE AND STATISTICAL . . . PHYSICAL REVIEW E 63 026102
where we have changed variables tor5r 2/2 andu52f. We
note that in these variables the metric has the standard
metric form in polar coordinates. Thus, the new angular v
able is restricted to an interval of 2p ~for r50 to be a
regular point!, and thereforef is restricted to an interval o
p. This has implications also for large separation of the p
ticles, where the space of relative coordinates has the ge
etry of a cone rather than that of a plane. This is similar
the situation for the configuration space of two identical p
ticles when this is constructed by identification of physica
equivalent points@2#. However, in the present case the spa
is geometrically smooth for small separation and the red
tion in volume~essentially by a factor 2! compared to that of
nonidentical particles appears naturally from the metric
the space and not through the identification~by hand! of
equivalent points.

The phase space of bosons and fermions has the sam
metric for large separation. However, for small separatio
is smooth but different in the two cases. This leads to
correction to the phase-space volume coming from the sh
distance behavior which is different for bosons and fermio
If we fix the maximal separation,R,3 of the particles, the
volume of the interior of the selected region is determin
from the form of the potentialAz and Az̄ on the boundary
alone. With the description still restricted to relative coor
nates, the phase-space volume becomes4

V52E f z̄zdz̄̀ dz52F R Azdz1 R Az̄dz̄G .
~3.19!

This gives in the two cases

VB5 1
2 \pR2, VF5 1

2 \~pR222p!. ~3.20!

The difference in phase-space volume is a manifestatio
the difference in statistics in the classical description. Thi
readily understood from a semiclassical description wh
the number of states in a~single particle! phase space is
identical to the volume divided byh. ~The factor 1/2 in
~3.20! follows from the fact that we refer to relative coord
nates, with the angular integration in~3.19! running from 0
to p. The volume of one particle space with the position
the second particle fixed would not include this factor.! In
the following we will simply take the reduction in phas
space volume due to the presence of the other particl
defining the statistics parameter in the classical descript
We will then examine how the phase-space volume of

3R is again measured in dimensionsless units, just asz.
4The phase-space volume given by Eq.~3.19! is identical to the

Berry phase associated with the interchange of the two partic
The close relation between phase-space volume and Berry pha
the analog of the two well-known aspects of quantum statistics:
symmetry of the wave function on one hand and the Pauli exclu
principle on the other.
02610
at-
i-

r-
m-
o
-

e
c-

f

flat
it
a
rt-
s.

d

-

of
is
e

f

as
n.
n

N-particle system depends on this parameter, not only
bosons and fermions but also for intermediate values of
statistics parameter.

B. Anyons in the plane

It is well known that the harmonic-oscillator cohere
states are identical to the maximally localized states
charged particles in a magnetic field projected to the low
Landau level~LLL !. The translation from harmonic oscilla
tor to particle in the LLL is as follows:

a5
i

A2
~P̃x2 i P̃y!l ,

~3.21!

z5
1

A2
~Rx2 iRy!

1

l
,

where ~in the symmetric gauge! P̃ i5pi2
1
2 eBe i j x̂ j are the

generators of magnetic translations,Ri the guiding center
coordinates, andl 5(\/eB)1/2 the magnetic length. This re
lation just expresses that the configuration space of cha
particles in the LLL is mathematically equivalent to th
phase space of a particle in one dimension. The reinterpr
tion of the coherent states as describing particles in the l
est Landau level is helpful in two respects. We can in
simple way generalize the coherent state representatio
bosons and fermions to fractional statistics, i.e., to anyon
the lowest Landau level. We can also more easily introduc
finite volume and take the correct thermodynamic limit. A
though there is no natural way to restrict particle motion
one dimension to a finite phase space, charged particles m
ing in a finite area penetrated by a constant magnetic fi
makes perfect sense. In particular we can~in theory! study
anyons moving on a compactified space, like a sphere. T
problem will be studied below, but first we generalize o
coherent-state formalism to the case of fractional statistic

In complex coordinates, anN-body anyon wave function
has the form

Cn~z,z̄!5)
i , j

S z̄i2 z̄j

zi2zj
D n/2

CB~z,z̄!, ~3.22!

whereCB is a totally symmetric function. In general ver
little is known about anyonic energy eigenstates forN.2.
Exceptions are the LLL anyon states in a magnetic fi
which are of the form@11#,

Cm
n ~z,z̄!5)

i , j
~ z̄i2 z̄j !

ne2(1/2)zz̄Sm~ z̄!, ~3.23!

wherem5(m1 , . . . ,mN), mi integer, and

Sm~z!5NmS)
m

zi
mi . ~3.24!

S is the symmetrization operator andNm a normalization
constant. We now recall@12# that the fermion and boson
coherent states in Eq.~3.6!, up to a normalization factor, is

s.
e is
e
n

2-5
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HANSSON, ISAKOV, LEINAAS, AND LINDSTRÖM PHYSICAL REVIEW E 63 026102
nothing but the projection on the lowest Landau level of
appropriately~anti!symmetrized position eigenstates,5

uz,6&5C6~z,z̄!PLLLuz,z̄,6&, ~3.25!

which implies that any bosonic of fermionicN-body wave
function in the lowest Landau level can be expressed as

C6~z,z̄!5^z,z̄,6uPLLLuC&5C6~z,z̄!21^z,6uC&.
~3.26!

In particular, if we are given a complete setCm
6(z,z̄) of such

LLL wave functions, we can reconstruct theN-particle co-
herent states by

uz,6&5C6~z,z̄!(
m

um&^muz,z̄,6&

5C6~z,z̄!(
m

C̄m
6~z,z̄!um&, ~3.27!

and using that the statesum& are normalized, we can expres
the normalizationC6(z,z̄) as

uC6~z,z̄!u225(
m

uCm
6~z,z̄!u25^z,z̄6uPLLLuz,z̄,6&.

~3.28!

The same procedure can now be applied to anyons in
LLL provided that wedefinethe coherent states by the pr
jection of the position eigenstates on the LLL. This definiti
is not unique, but can be shown to have several good p
erties@12,13#. By substituting Eq.~3.23! in the relations cor-
responding to Eq.~3.27! and ~3.28! and redefining the nor
malization constant by an exponential and a Jastrow fa
which is common for all the wave functions, we get

uz,n&5Nn~z,z̄!(
m

um&Sm~z!, ~3.29!

with

uNn~z,z̄!u225(
m

uSmu2

5ez̄z)
i , j

uzi2zj u22n^z,z̄,nuPLLLuz,z̄,n&.

~3.30!

These expressions are the anyonic counterparts to Eqs.~3.6!
and ~3.7! in the case of bosons and fermions, and the d
vation of the classical mechanics followsmutatis mutandis.
The expressions are of course much more complicated
in the boson or fermion case, and there is no known anal
expression for the Ka¨hler potential except in the case of tw

5This can easily be verified by explicit calculation, and it is al
natural since the coherent states are the minimum uncertainty s
centered aroundz.
02610
e

he

p-

or

i-

an
ic

particles, where the polynomial part of the wave function
the relative coordinatez is given by@11#

Sm~z!5
z2m1n

Ap22mG~2m111n!
. ~3.31!

The Kähler potential can then be calculated from Eq.~3.30!
and expressed in terms of a generalized hypergeom
function,

K~ z̄,z!5\ lnF 1

pG~11n! 1F2S 1;
1

2
1

n

2
,11

n

2
;
~ z̄z!2

16 D G .
~3.32!

The larger limit can be obtained from the properties of th
hypergeometric function, and coincides with the result
bosons and fermions. The smallr limit can be read off di-
rectly from the leading term in Eq.~3.30!,

lim
r→0

K~ z̄,z!5\n ln z̄z1
\

2~11n!~21n! S z̄z

2 D 2

1const ,

~3.33!

giving the asymptotic metric

ds2 →
r→0

5
2\

~11n!~21n!
@r2du21dr2#, ~3.34!

which interpolates smoothly between the expressions~3.18!
for bosons and fermions.~Note that the phase-space metr
found in this way does not have the same physical dimens
as the metric of the space in which the anyons move. Th
there is a scale factorl 2/\ between the two metrics, wherel
is the magnetic length.!

In spite of the complicated form of the Ka¨hler potential
K(z,z̄), there is a simple property that immediately follow
if we write it in the following form using the second identit
in Eq. ~3.30!:

K~z,z̄!5\F z̄z22n(
i , j

lnuzi2zj u1 ln ^z,z̄,nuPLLLuz,z̄,n&G .
~3.35!

For a translationally invariant state~corresponding to a con
stant magnetic field and no external potential! only the first
term can depend on the c.m. coordinateZ. Equivalently, we
consider the limitzi5Z where the positions of all the par
ticles coincide, and get

K~Z,Z̄!5N\Z̄Z, ~3.36!

corresponding to a single particle of chargeN, as expected.
Below we shall see that this relation is altered when
particles are moving on a sphere, and the corresponding
pression will allow us to calculate the pertinent phase-sp
volume for particles with different statistics.

tes
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C. Identical particles on a sphere

In this section we will calculate theN-particle phase-
space volume for particles confined to a finite region. We
interested in the dependence of the volume on the par
statistics. This extends the previous discussion of the t
particle case and makes it possible to derive the~classical!
statistical mechanics of the particles. As a convenient re
larization of the system size, we consider a phase space
spherical geometry.6

A charged particle moving on a unit sphere, penetrated
2 j units of magnetic flux, has a total angular momentumJ
5 j 1L, whereL is the orbital angular momentum. The low
est Landau level corresponds toL50 and has a 2j 11 de-
generacy@14#. Again we can construct coherent states
acting on an arbitrary minimal uncertainty state, which
shall take to beu j ,2 j &, with the appropriate group elemen
of SU~2!. We describe the sphere by stereographic projec
and use a dimensionless complex coordinate,z, related to the
polar angles byz52 tan(u/2)e2 if. It is easy to show tha
this z is translated into the dimensionlessz introduced earlier
in Eq. ~3.21! by the substitutionz→A(1/2j )z. For ease of
notation, we shall make this substitution only in the fin
expressions.

The SU~2! generators in thej representation, and the co
responding coherent states are given by

D~z!5ezJ1ehJ0e2 z̄J2, ~3.37!

whereJi satisfy the standard angular momentum commu
tion relations andh5 ln (11z̄z). TheD(z)’s satisfy a multi-
plication rule similar to Eq.~3.2!, but here it is sufficient to
know the overlap,

^zuw&5@~11 z̄z!~11w̄w!#2 j~11 z̄w!2 j . ~3.38!

Note that in the limitj 5R2/ l 2→` corresponding to a large
radius, or a strong magnetic field, we recover

^zuw&→e2(1/2)z̄z2(1/2)w̄w1 z̄w, ~3.39!

where we have rescaledz→A(1/2j )z. We can now immedi-
ately take over the results~3.6! and~3.7! for the bosonic and
fermionic states in the plane

uz,6&5N~z,z̄!
1

AN!
(
P

hP
6ezi P

J1
i
u0&, ~3.40!

and their normalization

uN~z,z̄!u225 (
P,P8

hPhP8

1

N!
^0uez̄j P8

J2
j
ezi P

J1
i
u0&.

~3.41!

6The most natural choice for a closed two surface seems to be
torus, since the sphere has a finite curvature. There is, howev
technical difficulty in generalizing the results in the plane to a to
in that the magnetic translation operators are not well defined
general translations due to the periodicity conditions@15#.
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Using Eqs.~3.37! and~3.38! we can easily calculate the re
evant overlap

^0uez̄J2
j
ewJ1

i
u0&5d i j ~11 z̄w!2 j ~3.42!

so

uN~z,z̄!u225(
P

hP)
i

~11 z̄i P
zi !

2 j . ~3.43!

For the case ofN coinciding bosons,zi5z, we immediately
get the following Kähler potential:

K~z,z̄!5N\2 j lnS 11
z̄z

2 j D , ~3.44!

and the corresponding metric

ds25
2N\

S 11
z̄z

2 j D
2 dzdz̄, ~3.45!

is just N times that of a sphere. Following Manton@6#, we
can use this result to obtain the the volume of theN-boson
phase space.7 The essential observation is that the subma
fold spanned by the configurations ofN coinciding bosons is
a complex curve of degreeN in the manifoldCPN . The
metric~3.45! immediately gives the volume corresponding
this complex curve, which can be shown to beN times the
areaA, obtained by integrating the fundamental two formv
in Eq. ~2.12! over a complex line. It then follows from a
general theorem for Ka¨hler manifolds that the total volume i
given by

V5
1

N!
~A!N. ~3.46!

In our case, using Eqs.~3.44! and ~2.12!, we get

A5\E
sph

v5h2 j 5
\4pR2

l 2
5eF, ~3.47!

which shows that the area ish times the number of flux
quantaf05h/e that penetrate the sphere, or equivalently\
times the area in units ofl 2.

In the fermion case, we first note from Eq.~3.43! that the
normalization can be expressed as a determinant,

uN~z,z̄!u225N!det~11 z̄izj !
2 j . ~3.48!

In this case we cannot directly put the particles on top
each other~that would give a divergingN), so we instead se
zi5z1d i and consider the limitd i→0. Expanding ind i , we
get

he
, a
s
r

7In @16# a formula for the volume of the moduli space for vortic
moving on an arbitrary genus Riemannian surface is derived m
ing extensive use of theorems from complex geometry.
2-7
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det~11 z̄izj !
2 j.~11 z̄z!2 jNdetMi j , ~3.49!

where

Mi j 511
2 j

~11 z̄z!
~ z̄d i1zd̄ j !. ~3.50!

The matrixM is Hermitian, so the determinant is real an
furthermore, it has zeros ford i5d j . These properties to
gether with power counting is sufficient to establish

detMi j 5CS z̄z

~11 z̄z!2D [N(N21)/2]

)
i , j

ud i2d j u2, ~3.51!

whereC is a z andd independent constant. Combining Eq
~3.49! and~3.51! we get, up to a constant, the Ka¨hler poten-
tial

K~z,z̄!5 ln~11 z̄z!2 jN2N(N21)1 ln~ z̄z! [N(N21)/2]

→2 jNS 12
N21

2 j D lnS 11
z̄z

2 j D2
1

2
N~N21!ln~ z̄z!.

~3.52!

The last term can be removed by a so-called Ka¨hler gauge
transformation, and corresponds to redefining the normal
tion constant by an analytic factor that does not contribute
the metric. The first term differs from the boson case~3.44!
only by the ‘‘reduction’’ factor 12(N21)/2j which equals
one for N51, corresponding to a single fermion, and ze
for N52 j 11 corresponding to a filled Landau level. Usin
the same argument as in the boson case, we get the p
space volume,

VF5
1

N!
@A2~N21!h#N. ~3.53!

Again the interpretation is clear—the available phase sp
for one particular fermion is reduced with an amounth by
each of the other particles present in the system. Thi
consistent with the semiclassical interpretation, where e
quantum state is associated with a phase-space volumh.
Note that there is a maximum number of particles allow
N52 j 11, in which case the phase-space volume~3.53!
vanishes. This corresponds to the situation where all the l
est angular momentum states are filled, i.e., to a filled low
Landau level. Thermodynamically this state is interpreted
being incompressible, as we will discuss further in Sec.

Finally we consider the case of anyons. A complete se
LLL anyon wave functions on the sphere corresponding
Eq. ~3.23! in the plane is given by

Cm
n ~z,z̄!5)

i , j
~ z̄i2 z̄j !

n)
i

~11zi z̄i !
2 j 1(n/2)(N21)Sm~ z̄!.

~3.54!

Following the steps leading from Eq.~3.23! to Eq.~3.30!, we
get the anyonic version for Eq.~3.35!,
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K~z,z̄!5\S 2 j 1
n

2
~N21! D(

i
lnS 11

zi z̄i

2 j D
22\n(

i , j
lnuzi2zj u1\ ln ^z,z̄,nuPlll uz,z̄,n&.

~3.55!

Note that in this case we do not have any explicit express
for the Kähler potential corresponding to Eq.~3.41! in the
case of bosons and fermions. We can, however, again de
the metric corresponding to configurations with coincidi
anyons, i.e.,zi5z, from the above expression, again notin
that the complicated overlap in the last term must be in
pendent ofz, this time because of rotational invariance. T
Kähler potential becomes

K~z,z̄!5\N2 j S 12
n~N21!

2 j D lnS 11
2z̄z

j D1••• ~3.56!

which again smoothly interpolates between the bosonicn
50) and fermionic (n51) results,

Vn5
1

N!
@A2n~N21!h#N. ~3.57!

The expressions we have found above for theN-particle
phase-space volume demonstrates a ‘‘classical exclu
principle.’’ Thus, each new particle introduced in the syste
will find the available volume reduced bya5nh relative to
the previous one. The quantitya, i.e., the reduction in phase
space volume, can be taken as defining the classical stati
parameter of the particles. In the present case it is simply
~dimensionless! quantum statistics parametern multiplied
with Planck’s constanth. In other cases such a classical s
tistics parameter may be possible to define in terms of
duced phase-space volume, even if there is no underly
point particle description. In the next section we will stud
such an example.

IV. VORTEX STATISTICS

In the preceding sections we have discussed how a ph
space description, with a classical statistics parameter, ca
derived from a~constrained! quantum description. In this
section we will consider a somewhat different system; a c
sical field theory with soliton solutions. The system we ha
in mind is the Chern-Simons Ginzburg-Landau~CSGL!
theory, originally introduced as a field theory for the qua
tum Hall effect@17#, with vortices~quasiparticles! as soliton
solutions. In a certain approximation the dynamics can
described in terms of vortex coordinates alone, and a ph
space description can be derived from the full theory. In t
description the vortices will be associated with a nontriv
classical statistics parameter, and we will show that the va
of this parameter agrees with the value of the~quantum!
fractional statistics parameter usually associated with qu
particles of the quantum Hall effect. In this derivation w
will make use of the close connection which exists betwe
the CSGL Lagrangian and the Lagrangian of the relativis
2-8



ot
in

ce

n
-
a
ak

s-
ll

n

ang-

the

mp-

d

he

ting.
id-

then
e
e-

s
p-

la
e

CLASSICAL PHASE SPACE AND STATISTICAL . . . PHYSICAL REVIEW E 63 026102
abelian Higgs model discussed by Samols, Manton, and
ers @5,6,18#. The metric of the vortex space is the same
these two cases and it is Ka¨hler @5#. We make use of the
results of Manton@6# for the volume of theN-vortex space,
to determine the classical statistics parameter of the vorti

The field theory Lagrangian, which describes fields in
~211!-dimensional space time, is

L5E d2xF i\f* D0f2
\2

2m
uDW fu22

l

4
~ ufu22r0!2

1m\emnram]narG , ~4.1!

wheref is a complex matter field,am a Chern-Simons field,8

m a mass parameter,l the interaction strength,r0 the pre-
ferred density of the system andm a statistics parameter. I
this classical field theory\ only plays the role of a dimen
sional parameter. For the original Laughlin quantum H
states described by the model the statistics parameter t
the valuesm51/@4p(2k11)# with integerk. D0 andDW de-
note covariant derivatives

D05
]

]t
1 ia0 ,

~4.2!
DW 5¹W 2 iAW ,

with

AW 5aW 1
e

\
AW ext . ~4.3!

AW ext describes a constant external magnetic field,Bext ,
which we assume is adjusted to fit the parameterr0 so that
the ground state is described by a constant fieldf of density
r0 with vanishing effective magnetic field,B5b
1(e/\)Bext50. The physical interpretation is that the sy
tem is at~or close to! the center point of a quantum Ha
plateau.

It is convenient to change to dimensionless form,

L5E d2xF if* D0f2
1

2
uDW fu22

l̃

4
~ ufu221!2

1emnram]narG , ~4.4!

where the new Lagrangian is obtained from the original o
by the substitutions

f→Ar0f,

8Although the theory is nonrelativistic, we choose to use a re
tivistic notation for the CS field witha05a0, ai52ai ( i 51,2) and
b5e i j ] ia

j .
02610
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A0→
\r0

mm
A0 , AW →Ar0

m
AW ,

~4.5!

rW→Am

r0
rW, t→ mm

\r0
t,

L→\2
r0

m
L.

The single dimensionless parameter in the rescaled Lagr
ian is l̃5(mm/\2)l.

There is no independent dynamics associated with
Chern-Simons field, since variation with respect toa0 gives a
relation between magnetic field and~charge! density, which
can be written as

B1~ 1
2 r2Bext!50, ~4.6!

with r5ufu2. We assumeBext51/2 to give r51 and B
50 in the ground state~all fields in dimensionless form!. For
finite energy configurations these values are reached asy
totically. With this assumption the constraint equation~4.6!
for B is rewritten as

B1 1
2 ~r21!50. ~4.7!

For stationary states the energy can be expressed as

E5E d2x@ 1
2 uD1fu21 1

2 B1~ l̃21!B2#, ~4.8!

with D1f5(D11 iD 2)f. The energy has the lower boun

E>E d2x 1
2 B5Np, ~4.9!

whereN is a non-negative integer. For the special valuel̃
51 of the coupling the lower bound can be saturated. T
field f then satisfies the linear differential equation

D1f50. ~4.10!

The two equations~4.7! and~4.10! define~for l̃51) station-
ary vortex configurations withN vortices of equal circulation
@19#.9 Since the configurations~for fixed N) are degenerate
in energy, the vortices can be regarded as noninterac
Gauge-equivalent configurations may naturally be cons
ered as physically equivalent, and the vortex space can
be identified with the~moduli! space obtained from the spac
of field configurations after the identification of gaug
equivalent configurations@5#. A point in vortex space is
identified by the set ofN ~unordered! vortex coordinates
which corresponds to zeros of the fieldf.

For values ofl̃ close to 1 the low-energy configuration
correspond to slowly moving vortices. A meaningful a

-
9We have chosenBext to be positive. With the opposite sign th

lower bound is saturated with vortices of opposite circulation.
2-9
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proximation is then to impose Eqs.~4.7! and ~4.10! as con-
straints on the field configurations. The constrained fie
describe a system of weakly interacting vortices. In thea0
50 gauge the Lagrangian takes the form

L5E d2x@ if* ḟ1AẆ 3~AW 2AW ext!2~ l̃21!B2#2Np.

~4.11!

Due to Eq.~4.7! this Lagrangian is invariant~up to a total
time derivative! under time-dependent gauge transform
tions, AW →AW 1¹W j, f→ei jf, and can therefore be inter
preted as the vortex Lagrangian defined on the space
gauge-equivalent field configurations.

It is useful to consider the two fieldsf andAW as compo-
nents of a complex two-component field@5#,

u5S f

AD , ~4.12!

with A as the complex fieldA5A11 iA2. A Hermitian scalar
product is introduced as

^uuv&5E d2xu†v. ~4.13!

With this notation, up to total time derivatives the kinet
term in the Lagrangian~i.e., the part with time derivatives!
can be written as

T5 i ^u2uextuu̇&, ~4.14!

with uext5(0,Aext).
The vortex configurations are described by a set of vor

coordinatesx5$x1 ,x2 , . . . ,xn%, with xi corresponding to
two real or one complex coordinate of vortexi. The precise
form of the multivortex configurations for given coordinat
is not known, but their existence is@19#. The kinetic term for
these configurations can be written

T5Ai~x!ẋi , ~4.15!

where the new vector potential is

Ai5 i ^u2uextu] iu&5 i ^uu] iu&2] i^uextuu&, ~4.16!

and where the differentiation now is with respect to the v
tex coordinates. The corresponding field tensor which
fines the symplectic form and the phase-space structur
the vortex space is

Fi j 5] iAj2] jAi522Im^] iuu] ju&. ~4.17!

The vortex space is the space of gauge equivalent fi
configurations which satisfy Eqs.~4.7! and ~4.10!. Let us
reconsider this gauge equivalence in terms of the comp
fields u. The infinitesimal gauge transformations have t
form

dvu5~ ixf,2] z̄x!, ~4.18!

with x a real function, so the vectorsdvu define a real vector
space. This can be extended to a complex vector space ifx is
02610
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allowed to be complex. We will refer to the correspondi
transformations as complex gauge transformations, w
G(u) as the projection onto this complex subspace, and
will refer to the directions defined by the gauge transform
tions ~4.18! as vertical directions. The orthogonal directio
~horizontal directions! are defined by variations in the fieldu,

dhu5~df,dA!, ~4.19!

which satisfy^dvuudhu&50, implying

2]zdA1 if* df50. ~4.20!

The real part is

¹W •dAW 1
i

2
~f* df2fdf* !50, ~4.21!

and the imaginary part is

dB1
1

2
dr50. ~4.22!

Changes in the fields which follow from variations in th
vortex coordinates will automatically satisfy the seco
equation,~4.22!, due to the constraint~4.7!. The first equa-
tion, ~4.21!, can be satisfied provided we make use of t
freedom to includereal gauge transformations in the varia
tions of the fields. Thus, we may assume both these eq
tions, or equivalently Eq.~4.20!, to be satisfied whendA and
df are replaced by the corresponding derivatives with
spect to vortex positions.

We introduceP(u)5I 2G(u) as the projection onto the
horizontal directions andDi5P] i as the projected deriva
tive. With the assumption that the gauge condition~4.21! is
satisfied the vector potentialAi can be written as

Ai5 i ^u2uextuDiu&. ~4.23!

It transforms under a~complex! gauge transformationx as

Ai→Ai85Ai2] iQ ~4.24!

with

Q5E d2x@f* f12i ] z̄~A* 2Aext* !#x. ~4.25!

This means thatFi j is invariant under complex gauge tran
formations and can be written as

Fi j 522Im^DiuuD ju&, ~4.26!

since the difference between] iu and Diu can ~locally! be
eliminated by a~vortex-position-dependent! gauge transfor-
mation.

We may consider the quantity

h i j 5^DiuuD ju& ~4.27!

as defining a Hermitian metric tensor for the vortex space
is obtained from the scalar product~4.13! by projection on
the horizontal directions. The tensorFi j , which is derived
from the kinetic part of the Lagrangian, and which defin
the phase-space structure of the vortex space, can now
identified with the imaginary part of this metric tenso
2-10
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The metric~4.27! is relevant also for the relativistic abelia
Higgs model, as we shall now demonstrate. The Lagrang
of this model has the form

L5E d2xF1

2
~Dmf!* Dmf2

1

4
FmnFmn

2
2l̃21

8
~ ufu221!2G . ~4.28!

It is quadratic in time derivatives and has the Chern-Sim
field replaced by a Maxwell field. The energy has the sa
lower bound~4.9! as the GLCS model, and forl̃51 this
lower limit is saturated if both the equations~4.7! and~4.10!,
known as the Bogomolny equations, are satisfied. Thus
these equations are used to define theN-vortex space, the
vortex space is the same for the two models. However,
kinematics, as defined by the kinetic part of the Lagrang
is not the same in the two cases. The nonrelativistic mode
linear in time derivatives, which means that the vortex sp
has the character of a phase space, while the relativ
model is quadratic in time derivatives, which gives the v
tex space the character of a configuration space.

Expressed in theA050 gauge and constrained by th
Bogomolny equations, the Lagrangian of the Higgs mo
has the form

L85T82V, ~4.29!

with

T85
1

2E d2x@ḟ* ḟ1AẆ •AẆ #,

~4.30!

V5E d2x~ l̃21!B21Np,

and the fields constrained by Gauss’s law

¹W •AẆ 1
i

2
~f* ḟ2ḟ* f!50. ~4.31!

The potentialV is the same, but the kinetic termT8 is dif-
ferent from that of the CSGL model. We note that the co
straint ~4.31! corresponds to the real part~4.21! of the con-
dition for motion in horizontal direction. Also the imaginar
part ~4.22! is satisfied due to the Bogomolny equations. T
constraint on the motion, given by Gauss’s law, can be
pressed in terms of the projectionP and the fieldu as

T85
1

2
^u̇uPuu̇&5

1

2
ẋi ẋ j^DiuuD ju&. ~4.32!

The kinetic termT8 is different, but is related to the ki
netic termT of the CSGL model.T8 is determined by the
real part, whereasT is determined~up to a gauge transfor
mation! by the imaginary part of the same Hermitian met
~4.27!. This metric has been examined in some detail
Samols@5# for the case of the abelian Higgs model. It is
Kähler metric, which is conveniently expressed in terms
complex vortex coordinates as
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ds2522iFz̄i zj
dz̄idzj , ~4.33!

with

Fz̄i zj
5 i @^Dz̄i

uuDzj
u&2^Dzj

uuDz̄i
u&#. ~4.34!

The corresponding Ka¨hler two-form is

v52Fz̄i zj
dz̄i`dzj . ~4.35!

The Kähler form determines the symplectic structure a
the volume of the vortex space. This (2N-dimensional! vol-
ume is the same whether the vortex space is considered
configuration space~i.e., with the volume determined by th
real part of the metric! or as a phase space~with the volume
determined by the imaginary part!, and has been calculate
by Manton@6# for N vortices on a sphere. The result is10

VN5
1

N!
@A28p2~N21!#N, ~4.36!

with A as the volume~area! of the one-vortex space. Th
volume~4.36! has the same form as discussed in Sec. III
N identical particles with nontrivial classical statistics. Wi
the vortex space interpreted as a phase space, the statist
the vortices can be extracted from the reduction term 8p2N.
In order to do so correctly we have to rewrite the volum
~4.36! in dimensional form. The phase-space volume is
termined by the Lagrangian~4.4!, and as follows from the
transformations~4.5! the phase-space dimensions are c
rectly reintroduced by the substitutionsA→m\A and VN
→(m\)NVN . In dimensional form the expression for th
N-vortex volume is

VN5
1

N!
@A24pmh~N21!#N, ~4.37!

and the classical statistics parameter as determined by
reduction in available phase space due to the presenc
other vortices therefore is

a54pmh[gh. ~4.38!

We can interpretg, the classical parameter divided byh, as
the dimensionless quantum statistics parameter. The v
g54pm agrees with the value of the statistics parameter
determined from Berry phase calculations with Laugh
wave functions@20#, or from the properties of vortices in th
CSGL model@17#.

V. STATISTICAL MECHANICS

A. Entropy and pressure of identical particles

We have already emphasized that even if the class
equations of motion, and thus theclassical dynamics, do not
depend on the classical statistics parametera, thestatistical
mechanics~and thus the thermodynamics! does. In this sec-

10Manton’s result has been changed with a factor (2p)N to fit the
definition of the metric in this paper. We also express theN-vortex
volume in terms of the single-vortex volumeA rather than the area
of the sphere. This gives a factorN21 instead ofN in the second
term of Eq.~4.36!.
2-11
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tion we demonstrate this by first calculating the entropy a
pressure in the two model systems considered in Secs
and IV, charged particles in the lowest Landau level, a
vortices in the CSGL model, respectively. The results of t
calculation fit nicely into the general framework of ‘‘frac
tional exclusion statistics’’ for particles with degenerate e
ergy levels, and we briefly review the basics of this top
before further discussing our results.

We assume the interaction strength to bel̃51 for the
CSGL theory. The vortex system is then degenerate in
ergy. That is also the case for a system of anyons in
lowest Landau level. Thus, both these systems have the
cial property that the energy does not depend on the s
but only on the number of particles. This means that
statistical mechanics is determined by the phase-space
ume VN , which has been determined in the previous s
tions, and by the energyEN . The classical partition function
is simply the total number of states,VN /hN, multiplied with
the Boltzmann factor, i.e.,

ZN5
VN

hN
e2bEN. ~5.1!

The following simple expressions for the free energyF and
the entropyS immediately follow:

F5EN2T ln~VN /hN!,
~5.2!

S5 ln~VN /hN!,

where Boltzmann’s constant is set to unity. The pressur
usually defined byP52(]F/]V)T , whereV is the volume
of real space, but in the systems we have considered the
two-dimensional space where the particles or vortices m
is proportional to the phase space, so we simply define
pressure as

P52S ]F

]AD
T

5T
] ln~VN /hN!

]A
, ~5.3!

whereA5V1 is the phase-space volume for a single partic
Substituting the results~3.57! or ~4.37!, we get

S5N ln~12ar!1N ln
A

h
2N ln N1N, ~5.4!

bP5
r

12ar
, ~5.5!

wherea5nh or gh, and where we have introduced the cla
sical phase-space densityr5N/A and neglected the differ
ence betweenN and N21, which is irrelevant in the ther
modynamic limit.

The expression~5.5! shows that there is a maximum de
sity r51/a allowed by the system, which corresponds to
infinite pressure and therefore to an incompressible state
the phase-space volume this meansVN50, i.e., there is no
available phase-space volume for any new particle adde
the system. For the anyon system this situation correspo
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to a completely filled Landau level. What is unusual abo
this is that the blocking, which can be interpreted as rep
senting a generalized Pauli principle, shows up not only
the quantum but also in the classical description of the s
tem.

B. Exclusion statistics and the classical limit

The generalization of the Pauli exclusion principle intr
duced by Haldane@4#, usually calledexclusion statistics,
states that in the presence of particles in a set of given qu
tum states, the number of available one-particle states for
new particle added to the system is reduced. More precis
the addition ofDN particles changes the number of availab
statesdN according to

DdN52gDN, ~5.6!

whereg is the exclusion statistics parameter. The statisti
weight, or number of states available for the fullN-particle
system, is given by the formula

WN5
@G1~12g!~N21!#!

N! @G2gN2~12g!#!
, ~5.7!

whereG is the number of single-particle states. Clearly E
~5.6! and ~5.7! reduce to standard expressions wheng50
~for bosons, with no exclusion! andg51 ~for fermions, with
total exclusion!. There exist some~theoretical! realizations
of exclusion statistics for particles in one dimension~i.e.,
with two-dimensional phase space! for g different from these
two values. One particular case is the system of anyons c
fined to the lowest Landau level, which we have alrea
considered@4#. In that case the exclusion statistics parame
g is identical to the anyon statistics parametern.

The statistical mechanics of particles with exclusion s
tistics can be derived from the statistical weight~5.7! when
the total energy can be written as a sum of single-part
energies and Eq.~5.7! is applied separately to~single-
particle! energy levels@21–23#. The result for the entropy is

S5(
k

Dk$@11~12g!nk# ln@11~12g!nk#

1~12gnk!ln~12gnk!2nk ln nk%, ~5.8!

where the sum runs over single-particle energy states.Dk is
the degeneracy of thekth level and thequantum distribution
function nk is the average occupation number of the statek.

Since each quantum state occupies the phase-space
umehD, with 2D the dimension of the single-particle pha
space, we can relaten andr in the semiclassical limit byn
5rhD. In the Boltzmann limit,h→0 andn→0, all depen-
dence ong in Eq. ~5.8! goes away. If we, however, define th
classical physics by the double limith→0, g→`, and
2-12
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ghD→a, where a is interpreted as a classical statisti
parameter11 Eq. ~5.8! gets a nontrivial limit of

S5(
k

Dkh
D@rk ln~12ark!2rk ln~rkh!1rk#. ~5.9!

If we further specialize to the case of fully degenerate sta
in a two-dimensional phase space, where the sum is sim
replaced by the total number of available single-parti
states,G5A/h, and whererk is replaced byN/A, we ex-
actly regain Eq.~5.4!. This demonstrates that the classic
statistical mechanics discussed in the preceding section
be regarded as a special limit of exclusion statistics, differ
from the Boltzmann limit.

An alternative way to see the correspondence is to s
from the the equation of state for exclusion statistics partic
with the same energy,

bP5
G

V lnS 11
n

12gnD , ~5.10!

wheren5N/G. Introducing the densityr̃5N/V and taking
the double limit defined above, we get

bP5
r̃

12ar̃
V
V1

. ~5.11!

If we identify the the physical volumeV with the one-
particle phase-space volumeA, so thatr̃5r, we reproduce
Eq. ~5.5!.

In the Appendix it is shown that even in a nondegener
case, with particles in a harmonic oscillator potential,
classical statistical mechanics, defined as in Sec. V A, c
cides with that of exclusion statistics when the classical li
is taken in the way discussed above. Clearly what is imp
tant for the connection with exclusion statistics is the t
defining relations~5.6! and ~5.7! that determine the numbe
of states in the system. In the classical description they
represented by the expressions for the phase-space vol
and by taking the limith→0,ghD→a it is straightforward to
demonstrate that Eqs.~5.6! and ~5.7! reproduce the expres
sions for the phase-space volume derived in Secs. III and

VI. DISCUSSION

In this paper we have described a way to encode the
ticle statistics in the classical Lagrangian of a many-part
system. The important point is that the Lagrangian inclu
more information about the system than just the class
equation of motion. It also gives information about the v
ume of the phase space, which in the quantum descrip
corresponds to the number of states. If theN-particle volume

11Such a way of taking the classical limit is well known fro
other contexts. Thus, a charged particle can in the quant
mechanical description be characterized by a dimensionless ch
g5q/A\c, whereq is the physical charge.~For q5e we haveg2

54pa, with a the fine structure constant.! With g fixed the charge
q depends on\ and vanishes in the limit\→0. However, if the
classical limit is taken as\→0,g→` with gA\c→q, the dimen-
sional chargeq survives the classical limit.
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can be determined as a function of the single-particle v
ume, a classical statistics parameter can be defined as
reduction in available phase-space volume for one part
by the presence of the others. Viewed in this way this cl
sical statistics can be regarded as an analog of exclu
statistics. In the specific examples we have considered,
relation can be made more specific and the classical sta
cal mechanics derived from this can be seen as a special
to take classical limit of exclusion statistics.

To make this idea more precise we have considered c
where the classical mechanics can be derived from the q
tum description by constraining the motion in Hilbert spa
to ~generalized! coherent states. For bosons, fermions, a
even anyons with a two-dimensional phase-space the
grangian can be derived and the phase space volume ca
calculated. The dimensional, classical statistics parame
defined as the volume occupied by each particle presen
these cases are simply the dimensionless quantum stat
parameter multiplied with Planck’s constanth. In another
example, vortices in CSGL theory, there is no such unde
ing point particle description, but a similar classical Lagran
ian can be found and the classical statistics parameter ca
related to the coupling of the Chern-Simons term.

There are several interesting questions raised by this
scription.

~i! Is the ‘‘classical fermion’’ description useful in som
cases? This description would correspond to retaining
fermions’ ability to occupy phase space, but otherwise tr
them as classical particles.@A classical electron would then
be characterized both by a charge and a~classical! statistics
parameter.# Can the description give a useful approximati
for other objects, like vortices in superfluids or superco
ductors?

~ii ! In the examples we have studied the phase spac
two dimensional, but the formalism~like for exclusion sta-
tistics! does not seem to depend in any crucial way on
mension. Are there nontrivial higher-dimensional example
~Fermions in two and three dimensions can certainly be r
resented like this.!

~iii ! What about quantizing such a classical theory? In
cases we have studied, with a Ka¨hler metric defined on phas
space, a quantum description can presumably be derived
unique way by use of analyticity properties. When regard
as a ‘‘requantization’’ of the system, how does it relate to t
original quantum description. What would, in particular, t
quantum description of the CSGL vortices be?

All these questions seem to merit further investigation
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APPENDIX: HARMONIC-OSCILLATOR POTENTIAL

In this appendix we consider the statistical mechanics
particles in a harmonic-oscillator potential. The particles
‘‘classical anyons’’ in the sense discussed in Sec. III, i.e.,
one derived from quantum anyons in the lowest Land
level. The system can also be interpreted as a coherent
representation of particles in a one-dimension harmo
oscillator potential, in a form interpolating between boso
and fermions. We calculate the partition function of t
N-particle system and show that this is related to the parti
function of a ~quantum! system of particles with exclusio
statistics in a harmonic-oscillator potential by the same c
respondence as obtained in Sec. IV.

The wave functions of the lowest Landau level have
form

c~z,z̄!5)
i , j

~ z̄i2 z̄j !
n f ~ z̄!e2(1/2)z̄z, ~A1!

with f ( z̄)[ f (z1 , . . . ,zN) as a general antianalytic functio
of the complex particle coordinates. It is assumed to be s
metric in the variables. We introduce analytic basis vect
by

^zuc&5 f ~ z̄!. ~A2!

The basis vectorsuz1 , . . . ,zN& are not normalized, but we
assumen to be chosen such that they are regular and non
nishing at points of coincidence of particle positions. No
malized vectors are introduced by

ucz,z̄&5Nz,z̄uz&,
~A3!

uNz,z̄u225^zuz&.

Defined in this wayuNz,z̄u22 is a regular function with no
zeros anywhere inN-particle space, and the Ka¨hler potential
K5 lnuNu22 is a regular function everywhere.

The Hamiltonian depends on two frequencies, the cyc
tron frequencyvc determined by the external magnetic fie
and the frequencyv0 of the additional harmonic-oscillato
potential. When acting on the antianalytic partf ( z̄) of the
wave functions of LLL, the Hamiltonian has the form

H5\~v t2vc!(
i

z̄i] z̄i
1\v tFn2 N~N21!1

N

2 G ~A4!

5\v(
i

z̄i] z̄i
1VN

0 , ~A5!

with v t5Avc
21v0

2, v5v t2vc and VN
0 the quantum-

mechanical ground-state energy

VN
0 5\v tFn2 N~N21!1

N

2 G . ~A6!

For a system of particles in a one-dimensional harmon
oscillator potential the Hamiltonian is essentially the sam
except that it depends on a single frequencyv0,
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H5\v0(
i

z̄i] z̄i
1\v0Fn2 N~N21!1

N

2 G . ~A7!

Thus the difference between these two cases is only an o
all N-dependent shift of the energy spectrum.

The energy of the classical description is determined
the matrix elements of the Hamiltonian~A4!,

V~z!5^zuHuz&uNz,z̄u2

5F H \v(
i

z̄i] z̄i
1\v tFn2 N~N21!1

N

2 G J
3uNz,z̄u22G uNz,z̄u2

5\v(
i

z̄i] z̄i
lnuNz,z̄u221\v tFn2 N~N21!1

N

2 G ,
~A8!

and theN-particle partition function is

ZN5
1

hNE vN

N!
e2bV, ~A9!

wherev is the symplectic form

v52 f z̄i zj
dz̄i`dzj , ~A10!

with

f z̄i zj
5 i\] z̄i

]zj
lnuNz,z̄u22. ~A11!

The form of the energy makes it possible to evaluate
integrals in the expression for the partition function. W
write it as

ZN5
e2bVN

0

pNN!
e i j •••kE d2z1•••d2zN@] z̄i

]z1

3 lnuNz,z̄u22
•••] z̄k

]zN
lnuNz,z̄u22#

3expH 2bF\v(
i

zi]zi
lnuNz,z̄u22G J . ~A12!

The partition function can be rewritten as

ZN5
1

~2b\v!

e2bVN
0

pNN!
e i j •••kE d2z1•••d2zN

3
1

z1
] z̄iF lnuNz,z̄u22

•••] z̄k
]zN

lnuNz,z̄u22

3expH 2bS \v(
i

zi]zi
lnuNz,z̄u22D J G , ~A13!

and by use of the identity

1

z1
] z̄i

5] z̄i

1

z1
2pd~z1!d i1 ~A14!
2-14
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the integration overz1 can be performed

ZN5
p

b\v

e2bVN
0

pNN!
e j •••kE d2z2•••d2zN

3@] z̄j
]z2

lnuNz,z̄u22
•••.] z̄k

]zN
lnuNz,z̄u22#

3expH 2bFv(
i

zi]zi
lnuNz,z̄u22G J . ~A15!

The (N21)-particle integral in this expression is of the sam
form as the originalN-particle integral, and by repeating th
procedureN times we get the following simple expressio
for the partition function:

ZN5
1

~b\v!NN!
e2bVN

0

5
1

~b\v!NN!
expH 2b\v tFn2 N~N21!1

N

2 G J .

~A16!

The classical expression for the partition function can
compared with the partition function of the quantum syst

ZN5Tr e2bH, ~A17!

with H given by Eq.~A4!. This expression is easily evalu
ated, since it can be written as
is.

li-

s.

02610
e

ZN5e2bVN
0

(
l 150

`

(
l 25 l 1

`

. . . (
l N5 l N21

`

e2b\v(
i

l i

5e2bVN
0F )

n51

N

~12e2n\bv!G21

. ~A18!

This expression shows that in the limit\→0, with \n fixed,
the partition function~A18! of the quantum system coincide
with the classical partition function~A15!. ~Note, however,
that the classical function depends on\ explicitly, not only
through the statistics factora5hn, due to the contribution
from the ground-state energy.!

It is well known that the system of particles in the lowe
Landau level can be regarded as a special realization of
clusion statistics@4#, and the correspondence between t
two partition functions discussed here is therefore essent
the same as the correspondence between the classical s
tical mechanics and the statistical mechanics of partic
with exclusion statistics discussed in Sec. IV. If we use
harmonic oscillator as a volume regulator the relation
tween the discussion in this Appendix and in Sec. IV b
comes even more direct. The thermodynamic limit is h
taken by interpreting the limitv0→0 in a specific way@24#.
For the quantum case the harmonic-oscillator regulator
been used in@22#, and the expressions for the entropy a
equation of state of anyons in the LLL were found in th
way. Due to the correspondence between the quantum
classical descriptions, the thermodynamic limit of the clas
cal functions with the harmonic-oscillator regularization w
be identical to the corresponding functions of Sec. IV. Th
is what should be expected, since for the thermodyna
limit it should be of no significance whether volume regula
ization is done by confinement to a sphere or by confinem
in a harmonic-oscillator potential.
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